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Bioenergy from forest residues can be used to substitute fossil

energy sources and reduce carbon emissions. However,

increasing biomass removals from forests reduce carbon

stocks and carbon input to litter and soil. The magnitude and

timeframe of these changes in the forest carbon balance largely

determine how effectively forest biomass reduces greenhouse

gas emissions from the energy sector and helps to mitigate

climate change. This paper reviews the impacts of harvest-

residue-based bioenergy on the carbon balance of forests and

discusses aspects linked to the concept of carbon neutrality.

This type of forest bioenergy will reduce the emissions in a long

run but near-term reductions depend essentially on the

longevity of the residues used.
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Introduction
To mitigate climate change, the European Union has

committed itself to, first, a reduction in greenhouse gas

(GHG) emissions of at least 20% below 1990 levels and,

second, a raise the share of renewable energy to 20% of

the EU energy consumption by 2020 [1]. Both targets

promote the use of biomass in energy production. An

attractive option to meet the growing demand for bioe-

nergy is to increase energy production from forest harvest

residues, such as branches, stumps, thinning wood and

other residual biomass left behind after forestry oper-

ations. Intensification of biomass extraction from forests

raises questions about the sustainability and the carbon

balance effects of this new practice.

Increasing removal of forest residues for energy use

decreases the pool of carbon stored in dead organic matter

and litter input to soil [2–5]. The litter input and

decomposition of organic matter determine the size of

the soil carbon stock, that is the amount of carbon
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accumulated to the soil, similarly as the growth and

removals of biomass determine the carbon stock of trees.

Globally, the amount of carbon in soils is twice the

amount of carbon in the atmosphere and three times

the amount in the vegetation [6]. As an example, Finnish

forest carbon stocks, fluxes [7] and the effect of forest

harvest residue removal is shown in Figure 1.

Potentially, there is a conflict between climate policies

targeting at carbon storage in forests and the increased use

of forest-based biomass for energy production [8]. From

the perspective of greenhouse gas emissions, there is a

trade-off between using forest harvest residues for bioe-

nergy to avoid fossil fuel emission, and adding them to the

forest carbon stock. Since the forest harvest residues

decompose over time, if left in the forest, this problem

also involves an important temporal dimension.

In this synthesis paper, we review the impact of harvest-

residue-based bioenergy production on forest soil carbon

stocks and discuss aspects linked to the concept of carbon

neutrality.

Controversial carbon neutrality
Forest bioenergy is commonly considered as a renewable,

carbon neutral energy source. Carbon neutrality refers to

achieving net zero carbon emissions by balancing an

amount of carbon released with an equivalent amount

sequestered or offset, to make up the difference. Forest

bioenergy is derived from vegetation that sequesters

atmospheric carbon during growth, releases carbon back

into the atmosphere when combusted for energy pro-

duction, and sequesters it once again as the next tree

generation develops [9–11]. This is true in the long term

as long as conditions do not change but, in the short term,

the practice is not necessarily carbon neutral. This is

because CO2 and other greenhouse gases are emitted

instantly into the atmosphere when biomass is used in

energy production and the development of the next tree

generation takes decades.

Researchers have recently remarked that there is a

‘‘critical climate accounting error’’ associated with bioe-

nergy production that causes land-use change [12��].
They have questioned the carbon neutrality of renewable

biomass because of high indirect greenhouse gas emis-

sions owing to conversion of the forest to an energy crop

plantation that may reduce the carbon stocks of biomass

and soil and cause thus GHG emissions into the atmos-

phere [13–15]. GHG emissions resulting from land-use

change have been widely studied in the Americas, South-

east Asia and Africa [16–18]. These emissions resulting
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Figure 1
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Bioenergy and the carbon budget of forests in Finland (carbon stocks in Mt C, annual carbon sink Mt C in parenthesis and fluxes in Mt C/year in the

1990s [7]. Energy production from harvest residues will be increased from nearly zero to 13.5 Mm3/year by 2020 according to Finnish national energy

strategy (red dashed flux). This annual volume, equal to about 3 Mt C/year, represents about one fourth of the total annual harvest residues and is

larger than the annual carbon sink of the forest soil in the 1990s.
from changes in carbon stocks are often excluded when

assessing climate change mitigation potentials of bioe-

nergy [13,14,19].

Similar land-use-related emissions occur also within the

same land-use. The indirect emissions from removing

forest harvest residues, and using them for energy pro-

duction, result from combusting the residues and releas-

ing CO2 into the atmosphere soon after harvesting instead

of letting them decompose slowly at the harvested site. As

a consequence of such practice, the amount of carbon

stored at the forest site decreases [20�]. These alterations

have been described using terms like ‘carbon debt’,

‘carbon deficit’ or ‘indirect carbon dioxide emissions’

[12,13,20�,21�,22,23�].

Emissions from the production chain of forest bioenergy,

that is those from machines used in biomass harvesting,

processing and transport, are usually small, only a few per

cent, in comparison to the changes in the carbon balance

of forest [24–28].

Logging residue removal and soil carbon
Intensified harvesting output from forests by removing

residues leads usually to a decrease in soil carbon [3,4]. In

field studies Olsson et al. [29] and Thiffault et al. [30]

found that soil C stocks under stem only harvesting were

significantly higher than those under whole tree harvest-

ing in boreal forests. Jones et al. [31] supported this result.

Model-based calculations show clearly that intensified
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removal of harvest residues reduces the soil carbon stock

[4,5,20,22,32,33]. Consequently, the amount of organic

carbon stored in the soil decreases in the long term in

comparison to a practice leaving harvest residues in forest.

Forest soil disruption associated specifically with stump

harvesting may release additional CO2 into the atmos-

phere. However, empirical research on the magnitude of

these emissions is few [34,35]. Stump harvesting means

that the tree stumps left after felling are pulled out of the

ground to supply wood fuel for biomass power stations.

Hope [36] found that stump removal together with forest

floor scarification reduced soil carbon stocks. Generally it

is known that soil disturbance can change the microcli-

mate and stimulate the decomposition of litter [37]. In a

Finnish study, the site preparation increased CO2 efflux

from the soil, but this effect leveled off rapidly [38].

However, the stump harvesting may cause deeper mixing

and more extensive scarification of soil than the normal

site preparation [39]. The CO2 efflux from a stump

harvest site in Sweden was observed to be slightly larger

with more seasonal variation than the efflux from a clear-

cut site [40]. Stump harvesting increases the temperature

sensitivity of decomposition and increases CO2 effluxes

[40]. On the contrary, in the humus layer samples, taken

10 years after harvest, the rate of C mineralization was

lower in whole-tree harvest than in stem-only harvest;

also the rate of net N mineralization and the amounts of C

and N in the microbial biomass tended to be lower,

although not statistically significantly [7].
www.sciencedirect.com
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Wood size and decomposition rate
When bioenergy is produced from forest harvest residues

the GHG emissions depend mainly on the decomposition

rate of the removed forest residues if they were left in the

forest to decompose [32]. Important factors affecting the

decomposition rate of forest residues are the size of the

residues, climate conditions, and the chemical quality of

the residues, which is associated with tree species, for

example [41–43]. Thus, the GHG emissions vary remark-

ably between the raw material options [17].

Quite recently, there has been growing interest in the

potential for utilizing stump biomass as an additional

source of forest bioenergy. Stumps are the largest coarse

woody debris component normally left to decompose in

forest stands after clear-cutting. In mature stands, stumps

account for 15–20% of the carbon and 8–15% of the

nitrogen found in tree biomass [44,45]. Stumps decom-

pose slower than roots, branches and needles [43–48] and

can therefore be important C pools and long-term sources

of nutrients [7]. Therefore, if decomposition occurs

slowly, stumps might be more valuable as carbon storage

than as an energy source.

Forest bioenergy and carbon sink
Forests of the EU have been intensively managed since

many decades, yet they have formed a significant sink for

carbon from the atmosphere over the past 50 years [49–
52]. A carbon sink is a reservoir that accumulates and

stores carbon-compounds for an indefinite period and the

process by which carbon sinks remove carbon from the

atmosphere is known as carbon sequestration. There are

many reasons for this development, such as the European

age-class structure is relatively young resulting in

increased growth rates; forest area has expanded in the

past 50 years; plant productivity has increased as a result

of various environmental changes (including temperature

change, length of growing season change, and nitrogen

deposition); and most importantly the growth rates of

European forest have been higher than past harvest rates

[51–53].

The decreasing effect of logging residue removal on soil

carbon stock has not been considered to be problematic as

long as this removal practice does not jeopardize the

carbon sink of soil [4,5,26,54–57]. Sievänen et al. [57]

calculated that increasing the removals of logging resi-

dues from 4 to 15 Mm3 yr�1 in Finland will not turn the

Finnish forests from net carbon sinks to net sources.

However, the intensified removals of the logging residues

would decrease the annual carbon sink of these forest soils

by 3.1 million tons of CO2 eq.

According to field studies, logging residue extraction can

also have a significant negative effect on future forest

growth because of increased nutrient removal [58,59�].
This would mean a decreased carbon stock in living
www.sciencedirect.com 
biomass and a further negative effect on the GHG profile

of forest residue bioenergy [20�]. The reduced availability

of nutrients may affect the long-term productivity of the

forest ecosystem [59�]. Stumps may also play a significant

role in retaining N after harvesting, and their removal for

bioenergy may markedly affect the nutrient availability

and nutrient cycling of boreal forests [45]. Sathre et al. [60]

suggested that fertilization, in Norway spruce stands, can

be used to compensate for the loss of soil carbon stock

caused by biomass removal from the forest.

Timing of the emissions
Over time, the carbon debt could be repaid through

regrowth in the harvested area and replacement of fossil

fuels as an energy source (payback time). Holtsmark [61]

calculated that increasing the use of wood from a boreal

forest to replace coal in power plants will create a carbon

debt that will only be repaid after approximately 190

years. If the wood is used to produce second-generation

liquid biofuels and replaces fossil diesel, the payback

time of the carbon debt was estimated to be as long as

340 years. McKechnie et al. [62��] studied a temperate

forest in Ontario. In the case in which pellets replace coal

in power plants, the payback time was somewhat shorter

than in boreal forest. This was expected because the

temperate forests grew more quickly [61]. This signifi-

cance of the time dimension of the forest growth is also

emphasized in some other studies [21�,63].

When bioenergy production from forest residues is

started or the volume is increased remarkably the

GHG emissions per unit of produced energy are com-

parable to those of fossil fuels. The latter remain constant

over time but the emissions from forest residue bioenergy

decrease over time because the residues decompose

releasing CO2 into the atmosphere even if left in the

forest. The faster is the decay rate of the residues the

faster the GHG emissions of forest bioenergy drop over

time [20�,32].

Conclusions
Producing energy from biomass is meant to reduce GHG

emissions. However, burning biomass causes net GHG

emissions into the atmosphere just like burning fossil

fuels if harvesting the biomass decreases the amount of

carbon stored in plants and soils, or reduces carbon sink.

Legislation that encourages substitution of fossil fuels by

bioenergy, irrespective of the biomass source, may even

result in increased carbon emissions. Considering bioe-

nergy in isolation of its impact on forest carbon could

inadvertently encourage the transfer of emissions from

the energy sector to the forest sector rather than achieve

real reductions.

In order to evaluate whether countries should use the

forest bioenergy potential to contribute to reducing car-

bon emissions, through fossil fuel substitution, or whether
Current Opinion in Environmental Sustainability 2013, 5:41–46
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they should be used as carbon sink, we need to consider

the temporal perspective. In the short term, flows into the

atmosphere as a result of bioenergy combustion may

sometimes be slightly greater than from fossil fuel com-

bustion because of the CO2 emission factor for combus-

tion of wood is higher than that of many fossil fuels [64]. It

may not be possible to decrease emissions very quickly by

substituting forest bioenergy for fossil fuels. Net

reductions in the emissions will be achieved only in a

longer term. This is relevant for the current international

climate policy. Parties of the UNFCCC have set a target

to limit global warming to some 2 degrees. To achieve this

target, emissions of industrialized countries need to be

reduced almost immediately.

The holistic ecosystem level analysis of the carbon bal-

ance should include the carbon uptake in tree growth and

the emissions of decomposition of soil organic matter

controlling the sink/source dynamics of the ecosystem.

Furthermore, carbon is emitted in management, harvest-

ing and transport operations. The carbon balance of any

bioenergy production system must be assessed over the

life cycle of the product; carbon accounting protocols for

bioenergy production systems must quantify the net

carbon emitted into the atmosphere and reductions in

fossil fuel-derived carbon emissions achieved.
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