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Abstract

Radio access technologies for cellular mobile networks are continuously
being evolved to meet the future demands for higher data rates, and
lower end-to-end delays. In the research and development of LTE, radio
network simulations play an essential role. The evolution of parallel
processing hardware makes it desirable to exploit the potential gains of
parallelizing LTE radio network simulations using multithreading
techniques in contrast to distributing experiments over processors as
independent simulation job processes. There is a hypothesis that parallel
speedup gain diminishes when running many parallel simulation jobs
concurrently on the same machine due to the increased memory
requirements. A proposed multithreaded prototype of the Ericsson LTE
simulator has been constructed, encapsulating scheduling, execution
and synchronization of asynchronous physical layer computations. In
order to provide implementation transparency, an algorithm has been
proposed to sort and synchronize log events enabling a sequential
logging model on top of non-deterministic execution. In order to
evaluate and compare multithreading techniques to parallel simulation
job distribution, a large number of experiments have been carried out
for four very diverse simulation scenarios. The evaluation of the results
from these experiments involved analysis of average measured
execution times and comparison with ideal estimates derived from
Amdahl’s law in order to analyze overhead. It has been shown that the
proposed multithreaded task-oriented framework provides a convenient
way to execute LTE physical layer models asynchronously on multi-core
processors, still providing deterministic results that are equivalent to the
results of a sequential simulator. However, it has been indicated that
distributing parallel independent jobs over processors is currently more
efficient than multithreading techniques, even though the achieved
speedup is far from ideal. This conclusion is based on the observation
that the overhead caused by increased memory requirements, memory
access and system bus congestion is currently smaller than the thread
management and synchronization overhead of the proposed
multithreaded Java prototype.

Keywords: Parallel Simulation, PDES, LTE, Radio Network Simulation,
Multithreading, Java, Concurrency.
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Mathematical notation

Symbol

Sn

(1-n)

CRC, (¢, x)

Description

Speedup of a parallel homogenous system with

N processors.

The execution time for a program on a single

processor.

The execution time of a program on N

processors.

Efficiency of a parallel homogenous system

given in percent.

Fraction of an algorithm or program to be
executed sequentially.

Fraction of an algorithm or program to be
executed in parallel.

Actual computation time when executing a
task.

Amount of execution time due to
communication overhead when executing a
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Error detecting code or checksum.
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Introduction

Mobile communication systems have, since they were first introduced in
1946, evolved into global systems, enabling not only traditional
telephony, but also advanced data communication services. Mobile
communication systems now form part of the everyday life for almost
half of the world’s population. Developing mobile technologies has also
emerged from being a regional or national concern to becoming a
complex task undertaken by global standards-developing organizations
such as Third Generation Partnership Project (3GPP) [1]. A continuously
growing demand on mobile services places higher demands on future
research and technical development within the area of cellular
communication.

Background and problem motivation

Radio access technologies for cellular mobile networks are continuously
being evolved to meet the future demands for higher data rates and
lower end-to-end delays. Currently, evolutions of the third generation
(3G) systems, so-called 3G Long Term Evolution (LTE) cellular systems,
are being developed by Ericsson and others and will be commercially
available in 2010 [1].

In the research and development of LTE, radio network simulations
play an essential role in estimating the system and user performance of
entire systems or specific radio network functions. The higher
bandwidths, larger number of users and more advanced signal
processing of LTE requires more extensive simulations, which takes
both time and computer resources. Since the computer processing trend
is heading towards parallel processing techniques due to the parallel
nature of modern desktop-computer multi-core processors [2] [3], it is of
paramount interest to exploit the potential gains of parallelizing radio
network simulations.

This master thesis study focuses on multithreaded parallel simulation
rather than distributed parallel computing models. The reason for this is
that most simulation studies consist of many independent simulation
jobs, which makes it fairly easy to use distributed computing
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environments, simply by running independent jobs on different
machines. Attempts have been made at Ericsson to run several
independent simulation jobs concurrently on the same machine [4], thus
in the optimal case dedicating one simulation process to each core.
However it is possible that the parallel gain diminishes if several jobs
are executed in this way, due to limitations of processor cache, extensive
memory access, limitations of the system bus bandwidth and race
conditions between processes. Identifying tasks and algorithms in the
existing model that can be run concurrently is considered a convenient
first step towards introducing parallel computing concepts to the LTE
simulation platform.

In order to ease the future work of the LTE simulator developers at
Ericsson, it is also desirable to investigate the possibilities of introducing
parallelism as transparently as possible, thus preserving the current
system architecture and hiding parallel implementation details.

Overall aim

The overall aim of this thesis is to obtain an indication as to whether
parallelization of the current simulator platform by means of
multithreading technology is possible and to determine what gains in
performance and thereby reduction in execution time such
modifications may have. A successful implementation would result in
shorter simulation times due to more efficient utilization of the client
system’s processing capacity as well as increased scalability. Shorter
simulation times will in turn improve the efficiency of radio
communication research considering LTE simulation experiments and
algorithm evaluation. This would also make it possible to compute more
accurate and complex models involving increased number of entities
considering a fixed simulation time frame. As long as the development
of multi-core central processing units (CPUs) is still going in the direction
of increasing the number of processor cores [2] [3], the software will also
be well-adapted for more sophisticated parallel processing hardware
architectures in the foreseeable future.

Independently to the outcome of the prototype implementation, this
thesis is likely to contribute with valuable information and conclusions
regarding the difficulties, drawbacks and limitations regarding
parallelization of existing sequential, event-driven, deterministic
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simulation applications in general and parallelization of user-centric
radio network simulations in particular.

Scope

The theoretical part within this report covering 3G evolution and 3GPP
LTE technologies is restricted to only introducing the reader within the
tfield of telecommunications and radio communication technology
related to 3GPP LTE. There is absolutely no intention to create a survey
covering all aspects of LTE technology. For readers who require more
exploratory descriptions regarding this subject there are other more
illustrative resources that cover the technology and concepts of 3G and
LTE such as 3G Evolution by E. Dahlman et al. [1]. Instead, this part of
the thesis presents an overview of the technologies that are vital to
understand in order to follow the reasoning in this thesis and
understand the simulation model.

Theory about parallel computing in this report is restricted to only
clarifying the fundamentals of parallel processing and in describing
simple methods regarding how to estimate performance gains of
parallel processing. The diversity of parallel hardware architectures,
processing networks and their specific features will not be covered
within this report. Only performance metrics associated to homogenous
multiple-instruction, multiple-data (MIMD) parallel architectures with
shared memory will be considered as the vast majority of multi-core
processors available today have symmetric cores [5].

The simulation platform developed by Ericsson Research for simulating
multi-cell radio networks is built for deterministic event-driven
simulation. The simulation model includes multiple cells, users, base
stations and antennas. It also contains complex algorithms modeling
data communication, protocol layers, radio wave propagation and
interference [6]. The complexity and detail of the simulation model
addresses the need to restrict this work to only focussing on key parts of
the simulation model and the Java™ [7] simulator application.

Earlier results obtained when profiling and optimizing the LTE
simulation platform have indicated that the major portion of the total
computation-time for multi-cell LTE is spent within the physical layer
models when simulating detailed and highly accurate models, as stated
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by L. Zhang [4]. The LTE physical layer model involves transmission
between base stations and mobile user equipment, modeling signal
modulation, propagation and interference. This work will be restricted
to primarily investigating the possibility to modify and adapt the
physical layer model design for parallel multithreaded execution to
work as a prototype for evaluation. The proposed design in this thesis
will focus on the simulator environment constructs, data dependencies
and data flow rather than an analysis and evaluation of the
mathematical models currently used at Ericsson for modeling physical
entities and protocols.

This work is also restricted to only evaluating and using technologies
intended for parallel computing on shared-memory multi-core
processors. Distributed solutions such as grid-computing or specialized
multi-processor systems such as super-computers will not be considered
within the scope of this thesis, they will merely be mentioned.

Profiling measurements performed within the scope of this work and
the results obtained from these will be restricted to being based on the
output from one profiling tool only, supplied by Ericsson Research.
However, a renowned, well-tested and publicly accepted tool for Java
profiling will be used.

Concrete and verifiable goals

The difficulties within the problem domain comprehending and
analyzing a very large and complex sequential application and
modifying it to suit parallel computations, while still preserving the
correctness and reliability of the original software will be dealt with. A
sequentially executed deterministic simulation model is not easily
converted in order to perform parallel calculations as the next
simulation state is derived from the current state. Hence, the order of
interaction, communication and results from parallel calculations must
be synchronized and ordered so as to be aligned with the simulation
time (logical time). This can be verified by comparing the system output
from the current verified platform release and the implemented parallel
prototype.

The minimum requirements for the theoretical part of this work are that
the following research areas and techniques are analyzed:



1.5

Parallel simulation - Parallel

computing for high performance

LTE radio network simulations 1 Introduction
Hakan Andersson 2010-05-10

Fundamentals of 3GPP Long Time Evolution (LTE) radio
network technology, primarily physical layer technology. A
survey covering 3G evolution and LTE should be created to give
a basic theoretical background of LTE simulation.

Briefly describe the physical layer simulation models used at
Ericsson and provide detailed information regarding mechanisms
that are vital to understand this work.

Current research within the area of parallel simulation and
parallel computing, that can be related to the problem domain of
this thesis.

Standards, frameworks, external libraries and tools for parallel
programming in Java™.

The minimum requirements for the practical part of this work are that
the following are fulfilled:

Implement a multithreaded prototype of the LTE physical layer
model that is capable of utilizing desktop multiprocessor
architectures. Maximize transparency for developers considering
implementation and algorithm complexity.

Verify that the implemented prototype is deterministic and
produce the same result as the non-parallel simulation platform
for the same input parameters.

Carry out performance measurements in order to be able to
compare the performance gains of the multithreaded prototype in
contrast to the sequential version.

Carry out performance measurements in order to be able to
compare the gains of multithreading compared to distributing
work on several independent processes executing concurrently.

Outline

This report contains a theoretical part which is composed of chapters 2,
3, 4 and 5: “3G and Long-Time Evolution (LTE)”, “Simulation model”,
“Parallel computing” and “Research in parallel simulations”
respectively.
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Chapter 2 aims at providing the reader with a brief introduction to the
evolution of wireless radio network communication and mobile
communication, in particular 3G and Long-Time Evolution (LTE)
standards and related technologies. If the reader is already familiar with
these concepts this chapter may be missed out. For others it may
provide som clarification regarding the technology, algorithms and
physical concepts that are part of the simulation model.

Chapter 3 aims at clarifying why simulation is an important part of
modern mobile communication research and presents a basic
description regarding the manner in which how the simulation model
and platform have been designed. This is required in order to
understand the more detailed analysis in chapter 4. This chapter also
summarizes current trends and breaktroughs within the field of parallel
simulation research.

In chapter 4, a survey on parallel computing and associated technologies
is presented. Java technologies have been particulary considered. This
chapter intends to provide the reader with an overview of possible
technologies that may be used to solve the problem at hand, but also to
illustrate which frameworks, tools and techniques were considered
before this work was conducted. Theoretical tools to analyze and
evaluate parallel algorithms are also presented in this chapter.

In chapter 5, a summary of research within the field of parallel
simulation, particularly parallel discrete event-driven simulation (PDES) is
described.

In chapter 6, the evaluation metrics and methods used to evaluate the
performance gains of multithreading techniques in LTE simulation is
presented as well as descriptions of the scenarios used for experimental
evaluation.

The second part of this thesis consists of a practical part including
chapter 7, “Design” and chapter 8, “Results”.

In chapter 7 the approach to introduce parallelism in LTE radio network
simulation is presented. This chapter contains an analysis of the
technical requirements and elaborates on structural design and parallel
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programming concepts used in order to determine algorithms and
design patterns that fit the stated requirements.

Chapter 8 presents the results obtained by profiling the multithreaded
prototype implementation and comparing it to the performance of the
current release of the simulation platform.

Chapter 9, “Conclusions” presents an evaluation of the work conducted
in this thesis in addition to personal comments and analytic
observations. A recommendation for future improvements and research
within parallel computing for event-driven user-centric radio network
simulations concludes this chapter.

Contributions

The sequential simulation platform, simulation model and its structural
design, algorithms and source code was contributed by and is the
property of Ericsson Research. This project has contributed to the
software design by reconstructing and adding functionality to an
already existing simulator environment by introducing parallel
programming design concepts and Java associated implementations
through a transparent task-oriented framework. The task-oriented
framework is independent from the simulator and usages outside the
area of simulation might be found for this framework in the future.

This work has contributed to Ericsson Research by serving as a pre-
study with regards to how to utilize the computational power of
modern multi-core systems in the most efficient way. Hopefully, the
outcome of this work may serve as an aid in decision making when
considering redesign or development of new parallel discrete event
simulators.

This work has also contributed to research within the field of parallel
programming and parallel discrete event simulation as a case study of
the strengths, weaknesses in addition to actual speedups achievied
when accommodating a sequential event-driven simulator for multi-
processor execution.
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3G long-time evolution (LTE)

The cellular technologies specified by the Third Generation Partnership
Project (3GPP) are the most widely developed in the world. These
technologies are commonly divided into generations, ranging from the
tirst generation of communication systems including the analog Nordic
Mobile Telephony (NMT) targeting only voice services, to second
generation (2G) technologies such as the Global System for Mobile
communications (GSM) and General Packet Radio Services (GPRS), to
modern third generation (3G) systems offering higher bandwidth services
through a higher-bandwidth radio interface called Universal Terrestrial
Radio Access (UTRA). 3G mobile telecommunication is based on the
wideband code division multiple access (WCDMA) air interface and packet
data in 3G is handled by technologies known as enhanced uplink and
High-Speed Downlink Packet Access (HSPDA) technology (jointly referred
to as HSPA, short for High-Speed Packet Access). When 3G was
developed, internationalization of cellular standardization also became a
reality and 3G is now handled in 3GPP.

The latest step within the development of 3GPP is an evolution of 3G
into an evolved radio access referred to as Long-Term Evolution (LTE)
and evolved packet access core network architecture in the System
Architecture Evolution (SAE). LTE and SAE are planned to be widely
deployed in 2010 [1].

Overview of LTE technology

The research and development of LTE is driven by an increasing
demand for higher end-user data transfer rates and the importance of
low delay, in addition to the normal capacity and peak data rate
requirements. Spectrum flexibility and maximum commonality between
Frequency Division Duplex (FDD) and Time Division Duplex (TDD)
solutions were also identified as high priority requirements. To achieve
these goals LTE has introduced a number of new technologies when
compared to previous cellular systems.

There is no requirement for the LTE radio interface to be backward
compatible with WCDMA and HSPA, which makes it possible to design
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the LTE radio interface from scratch, purely optimized for IP-
transmissions. However, LTE has to support spectrum flexibility as
operators obtain more and more scattered spectrums, spread over
different bands with different contiguous bandwidths. LTE has to be
able to operate in all these bands and with the bandwidths that are
available to the operator. However, due to costly filter designs, LTE is
targeted to operate in spectrum allocations from roughly 1 to 20 MHz.

The physical layer of LTE conveys both data and control information
between an enhanced base station (eNodeB) and mobile user equipment
(UE). The LTE physical layer employs some advanced technologies that
are new to cellular applications. These include Orthogonal Frequency
Division Multiplexing (OFDM), described in chapter 2.2 and Multiple
Input Multiple Output (MIMO) data transmission which is described in
chapter 2.3.

LTE is introduced in resemblance with an evolved core network known
as System Architecture Evolution (SAE) in order to enable the improved
performance to be achieved. System functions such as: user charging
systems, authentification, service setup etc. are not really part of the
radio access network functions, but are required by the radio access
technology. These functions are usually jointly referred to as the core
network functions primarily used by the operator. The SAE offers many
advantages over previous topologies and systems used for cellular core
networks, see E. Dahlman et al. for details [1].

Orhogonal frequency division multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as
the signal bearer technology for LTE [1]. In addition, two associated
access schemes are used: Orthogonal Frequency Division Multiple Access
(OFDMA) used on the downlink and single carrier DFT-spread OFDM
(DFTS-OFDM) also known as Single Carrirer Frequency Division Multiple
Access (SC-FDMA) on the uplink [8].

Previous cellular systems have used single carrier modulation schemes
almost exclusively. Transmission by means of OFDM can, instead, be
viewed as a kind of multi-carrier transmission which breaks the
available bandwidth into many narrower sub-carriers and transmits the
data in parallel streams [8]. OFDM transmission uses a large number of
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these close spaced sub-carriers that are modulated using low rate data
modulation, for example quadrature amplitude modulation (QAM).
Normally these signals would be expected to interfere with each other,
but this is avoided by making the signals orthogonal to each other by
having the carrier spacing equal to the reciprocal of the symbol period.
The result of this is that there is no mutual interference between the
different signals. When the signals are demodulated they will have a
whole number of cycles in the symbol period and their contribution will
sum to zero. In other words there is no interference contribution [9].

The data transmitted is split across all the carriers and if some of the
carriers are lost due to multi-path distortion effects, the data can be
reconstructed by using error correction techniques. Having data carried
at a low rate across all carriers also means that the effects of reflections
and inter-symbol interference can be overcome [1].

The actual implementation of the OFDM technology is different
between the downlink (i.e. from eNodeB to UE) and the uplink (i.e. from
UE to eNodeB) as a result of the different requirements between the two
directions and the equipment at either end. However OFDM was chosen
as the signal bearer format for LTE as it enables high data bandwidths to
be transmitted efficiently while still providing a high degree of
resilience to reflections and interference. In addition, OFDM can be used
in both frequency division duplex (FDD) and time division duplex (TDD)
formats which are key concepts for the LTE standard. This becomes an
additional advantage of OFDM as a modulation technique [1].

The choice of bandwidth for LTE is tightly coupled with OFDM as its
influences a variety of system design decisions, including the number of
carriers that can be accommodated in the OFDM signal and in turn this
influences other elements including, for example, the symbol length.

OFDM provides resilience to multi-path delays and spread. However it
is still necessary to implement methods of adding resilience to the
system in order to overcome inter-symbol interference (ISI). In areas where
ISI is expected, this is avoided by inserting a guard period into the
timing at the beginning of each data symbol. This makes it possible to
copy a section from the end of the symbol to the beginning. This is
known as the cyclic prefix (CP), see E. Dahlman et. al for details [1].
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LTE OFDM in the downlink

The OFDM signal used in LTE consists of a maximum of 2 048 different
sub-carriers that are spaced 15 kHz apart. Although it is mandatory for
the mobile user equipment to have a capability to be able to receive all
sub-carriers, not all are required to be transmitted by the eNodeB which
only must be able to support transmission of 72 sub-carriers. By this
means, all mobiles will be able to talk to any eNodeB. Within the OFDM
signal it is possible to choose between three types of QAM modulation:
phase-shift keying (QPSK) which is able to represent 2 bits per symbol,
16QAM which is able to represent 4 bits per symbol and 64QAM which
is able to represent 6 bits per symbol. QPSK is the slowest modulation
method in relation to data transfer rate, but does not require such a large
signal-to-interference-and-noise ratio (SINR). Only when there is a
sufficient SINR can the higher modulation formats be used.

In the downlink, the sub-carriers are split into resource blocks. This
enables the system to be able to divide the data across a fixed number of
sub-carriers. Resource blocks utilize 12 sub-carriers, regardless of the
overall LTE signal bandwidth and cover one slot in the LTE time frame,
further described in section 2.5. This actually means that different LTE
signal bandwidths will have different numbers of resource blocks [1].

LTE SC-FDMA in the uplink

For the LTE uplink, another OFDM-based technology is used, called
single-carrier frequency division multiple access (SC-FDMA) or single carrier
DFT-spread OFDM (DFTS-OFDM). The reason for this is that the RF
power amplifier that transmits the radio frequency signal from the UE
via the antenna to the eNodeB is the highest power consuming item
within the mobile device. Hence, it is necessary that it operates in as
efficient mode as possible to maximize battery life-time, which can be
significantly affected by the form of radio frequency modulation and the
signal format. SC-FDMA is a hybrid format that combines the low peak-
to-average power ratio offered by single-carrier systems, with the multi-
path interference resilience and flexible sub-carrier frequency allocation
that OFDM provides [1].

Multiple antenna techniques

One of the main problems that previous telecommunications systems
have faced is that of multiple signals arising from the many reflections
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that are encountered. By using multiple antennas and Multiple Input
Multiple Output (MIMO) antenna processing, also known as spatial
multiplexing, these additional signal paths can, instead, be used to
achieve improved system performance, improved system capacity
(more users) and improved coverage (possibility of larger cells) as well
as improved service provisioning, for example higher per-user data
rates [1]. Multiple antennas may also be used to provide additional
diversity against fading on the radio channel or shape the overall
antenna beam in a certain way, for example to maximize the overall
antenna gain in the direction of the target receiver/transmitter or to
suppress specific dominant interfering signals (also known as beam-
forming).

Using multiple antennas at both the transmitter and the receiver can be
seen as a tool to further improve the SINR and/or achieve additional
diversity against fading. In the general case of Nt transmit antennas and
Nr receive antennas, the receiver SNR can be made to increase in
proportion to the product Nr x Nr. This enables a corresponding
increase in the achievable data rates, assuming that data rates are power
limited rather than bandwidth limited. In the bandwidth-limited case,
MIMO techniques can, instead, increase the data rates by means of
spatial multiplexing, where multiple parallel data streams are sent
between a transmitter and a receiver.

MIMO schemes using 2x2, 4x2 and 4x4 antenna matrices are considered
for LTE. While it is relatively easy to add further antennas to a base
station, the same is not true for mobile handsets, where the dimensions
of the user equipment limit the number of antennas which should be
placed at least a half wavelength apart [1].

LTE duplex schemes

There are two forms of duplex schemes in LTE which enables uplink
and downlink transmission: frequency division duplex (FDD) and time
division duplex (TDD) [1]. FDD uses two channels, one for the transmitter
and one for the receiver and enables simultaneous uplink and downlink
transmission. TDD uses one frequency or channel, but allocates different
time slots for transmission and reception.
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LTE has been defined to accommodate both a paired spectrum for
frequency division duplex (FDD) and an unpaired spectrum for time
division duplex (TDD). It is anticipated that both LTE FDD and LTE TDD
will be widely deployed, as each form of the LTE standard has its own
advantages and disadvantages from which decisions can be made
regarding which format to adopt dependent upon the particular
application. LTE FDD is anticipated to form the migration path for
current 3G services, most of which use FDD paired spectrums.
However, there has been an additional emphasis on including TDD LTE
using unpaired spectrums. TDD LTE is seen as providing the evolution
or upgrade path for TD-SCDMA. In view of the increased level of
importance being placed upon LTE TDD, it is planned that user
equipments will be designed to accommodate both FDD and TDD
modes [1].

LTE frame and sub-frame structure

To maintain synchronization and for the LTE system to manage the
different types of information that must be carried between the base
station and the user equipment, an LTE time domain structure has been
defined. Figure 1 illustrates the high-level time-domain structure for
LTE transmission which consists of 10 ms radio frames that in turn
consists of ten equally sized sub-frames of length 1 ms.

LTE (radio) frame (10 ms)
—

#1 #2 #3 #4 #5

_ - -~
// \\

- One sub-frame (1 ms) ~~_

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Figure 1: LTE generic high-level time domain structure [1].

Within one carrier, the different sub-frames of an LTE radio frame can
be used either for downlink transmission or for uplink transmission. For
FDD, this implies an operation in a paired spectrum and that all sub-
frames of a carrier are either used for downlink transmission or uplink
transmission as illustrated in Figure 2.
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Frequency Division Duplex (FDD)
LTE (radio) frame (10 ms)

<
<

Uplink carrier AP AN A AN DM AN A A

<>
One sub-frame (1 ms)

Figure 2: Generic LTE frame structure, also known as Type 1 for either FDD or TDD
duplex modes [1].

In the case of TDD operation in an unpaired spectrum, the first and sixth
sub-frames of each frame are always assigned for downlink
transmission while the remaining sub-frames can be flexibly assigned
either for downlink or uplink transmission. The motivation behind this
predefined assignment is that these sub-frames include the LTE
synchronization signals that are used for cell-search and neighbor-cell
search. Flexible assignment of sub-frames in the case of TDD allows for
different asymmetries in terms of the amount of sub-frames assigned for
downlink and uplink transmission respectively, as illustrated in Figure 3

[1].

Time Division Duplex (TDD)

<

LTE (radio) frame (10 ms)

Approximately A |
Assymetric

(downlink focus). 2 7 | "2 | " N A

A tri
(uplink focus). ARV« DRV
\ <+«

/ One sub-frame (1 ms)
First and sixth sub-frame are always

assigned for downlink transmission

Figure 3: Examples of downlink/uplink assignment using TDD and LTE frame
structure Type 2. Note that TDD also can be used for Type 1 frames [1].
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LTE channels

To transport data across the LTE radio interface, various channels are
used to segregate the different types of data and allow them to be
transported across the radio access network in an orderly fashion. There
are three main categories into which the various data channels may be
grouped: logical channels, transport channels and physical channels [1].

Logical channels

The medium access control (MAC) layer handles logical-channel
multiplexing, hybrid automatic repeat requrest (HARQ) retransmissions
and uplink and downlink scheduling. The MAC offers services to the
radio link control (RLC) in the form of logical channels. A logical-channel
is defined by the type of information that is carried by the channel and is
generally classified as a control channel, used for transmission of control
and configuration information, or as a traffic channel used for the user
data [1].

Transport channels

From the physical layer, the MAC layer uses services in the form of
transport channels which are defined by how and with what
characteristics the information is transmitted over the radio interface.
Data on a transport channel is organized into transport blocks and in
each transmission time interval (TTI), at most one transport block of a
certain size is transmitted over the radio interface. However, using
spatial multiplexing, there can be up to two transport blocks per TTIL
Each transport block is associated with a transport format that specifies
how the transport block is to be transmitted over the radio interface:
transport block size, modulation scheme, antenna mapping etc.

Part of the MAC functionality is the multiplexing of logical channels and
mapping of the logical channels to the appropriate transport channels.
The downlink shared channel (DL-SCH) and uplink shared channel (UL-
SCH) are the main downlink and uplink transport channels [1].

Physical channels

The physical layer (PHY) is responsible for coding, physical-layer hybrid-
ARQ processing (retransmission), modulation, multi-antenna processing
and mapping of the signal to the appropriate physical time-frequency
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resources. The physical layer also handles mapping of transport
channels to physical channels. Figure 4 and Figure 5 shows examples of
how logical channels are mapped to transport channels and how
transport channels in turn are mapped to physical channels for the
downlink and uplink respectively [1].

PCCH BCCH CCCH DTCH DCCH MTCH MCCH
Logical

channels

Transport
channels

Physical —————— :
channels PBCH PDSCH PDCCH PHICH PCFICH PMCH

Figure 4: Downlink channel mapping [1].

CCCH DTCH DCCH
Logical

channels

Transport
channels

Physical
channels PUSCH PUCCH

Figure 5: Uplink channel mapping [1].
The physical channel types defined in LTE include the following:

e DPhysical downlink shared channel (PDSCH) — The main physical
channel used for unicast transmission and transmission of paging
information.

e Physical broadcast channel (PBCH) — System information that is
required by the terminal in order to access the network is
transmitted on this channel.

e Physical multicast channel (PMCH) - This channel is used for
multi-media broadcast over a single frequency network (MBSEN).
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e Physical downlink control channel (PDCCH) — Used for downlink
control information, mainly scheduling decisions that are
required for reception of PDSCH and for scheduling grants
enabling transmission on the PUSCH.

e Physical hybrid-ARQ indicator channel (PHICH) — This channel
carries hybrid-ARQ acknowledgement to indicate to the terminal
whether a transport block should be retransmitted or not.

e Physical control format indicator channel (PCFICH) — This channel
provides the terminals with information necessary to decode the
set of PDCCHs.

e Physical uplink shared channel (PUSCH) — The main physical
channel used for uplink transmission, i.e the counterpart to the
PDSCH.

e Physical uplink control channel (PUCCH) — Used by the terminal to
send hybrid-ARQ acknowledgements indicating retransmission
of downlink transport block(s) to the eNodeB, to send channel
status reports for downlink channel-dependent scheduling and
for requesting resources to transmit uplink data upon.

e Physical random access channel (PRACH) - Is used for random
access.

Note that there is only one PCFICH in each cell and only one PUSCH
and PUCCH for each terminal [1].
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Simulation model

Simulation allows experimentation, although computer simulation
mostly requires complex programs and is time consuming. However,
computer simulation has several advantages compared to direct
experimentation or mathematical models. Some of the most primary
advantages of using simulations are that it is possible to experiment
with different scenarios, repeating scenarios to find cause-and-effect
relationships and the possibility to take risks and explore possibilities
without thinking about cost as stated by A. E. Sheikh et al. [10]. Time-
flow handling in simulations may be managed using time-slices (move
forward in equal time intervals) or event-driven (eliminates unnecessary
processing). The behaviour of the system can be deterministic or
stochastic: deterministic systems have a behaviour that is entirely
predictable, whereas stochastic systems cannot be predicted, but some
statements can be made about how likely certain events are to occur
[10].

At Ericsson Research, simulation plays an important role in the research
and development of LTE. This chapter describes briefly the simulator
environment and model in addition to related platforms and
technologies.

Related simulation platforms and technologies

The simulation of LTE radio networks at Ericsson Research are achieved
through a Java simulation platform developed exclusively by Ericsson
Research [6]. However, simulation is nothing new within the research
and development of telecommunications, since it has been extensively
used as an engineering tool for design, implementation and
optimization of radio networks for a very long time. Hence, a diverse
range of simulation software and frameworks exist, both free and
commercial, which are able to model complex wireless network
systems.

One of the better renowned network simulators is OPNET [11], which is
a software suite containing simulation technologies for network and
wireless network simulation modeling. OPNET also offers data
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visualization, GUI-supported modeling, result prediction, monitoring
and application optimization. OPNET arrives with a commercial license
and requires some detailed implementations to be implemented in
C/C++ programming languages [11].

Another publicly available network simulator is Ns-2 [12], which is a
discrete-event simulator maintained as an open-source project,
originating from UC Berkely. Ns-2 provides support for the simulation
of TCP, routing and multicast protocols over wired and wireless
networks and is primarily targeted for UNIX systems, even though it
may be built and run on Microsoft Windows with Cygwin support [12].

WinProp Software Suite [13] is a commercial software suite, containing
tools for radio network planning and mobile radio wave propagation
simulations, supporting detailed models of indoor and outdoor
environments with different infrastructures. It supports several network
standards such as 2G, 3G, wireless LANs and WiMAX [13].

WarnSim [14], is a simulator for circuit-switched wide area radio
networks such as Land Mobile Radio System (LMR), Personal
Communication System (PCS) and Public Safety Wireless Network (PSWN).
The simulator is developed in C# .NET and hence only currently runs on
Microsoft Windows platforms with the .NET framework installed [14].

The computation and visualization software suite MATLAB [15] is
another application extensively used for simulator implementations in
radio network simulation. Several publicly available LTE technology
related simulators developed for MATLAB also exists, such as the LTE
simulator developed at the Vienna University of Technology [16].

Ericsson Research LTE simulation platform

3G long-time-evolution (LTE) networks are simulated at Ericsson
Research to evaluate performance in terms of coverage, capacity and
quality in a multi-cell system [17]. The LTE simulator is built using an
event-driven approach and an object-oriented hierarchical deterministic
simulation model. The platform provides implementations of entities
and physical models important to a radio network simulator, for
example: user generators, radio network, transport network, Internet,
deployment and propagation models. Additionally, the platform
provides detailed models of the radio network, including multi-cell
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interference (slow and fast fading), protocols (MAC, RLC, TCP/IP),
physical layer (OFDM) and traffic models (web, VoIP, streaming). The
simulation models, modelling both physical objects and logical objects
include the following (see Figure 6) [17]:

Mobility, deployment and propagation models are used to specify
the movement for mobile users, specify their distribution and
define typical path gains, shadow fading and multi-path fading
for different scenarios.

Physical layer models involve receivers, transmitters, decoders,
modulation and demodulation as well as physical level
communication protocols.

Radio protocol models are used to model protocol stacks and
protocol operations involving protocol specific data structures,
buffers, transmission and retransmission.

Application traffic models and Internet protocol models operate on the
highest level and involve user traffic models, including for
example, voice-over-IP (VolP) or web traffic as well as Internet
access.

Radio resource management (RRM) models handle link adoption,
scheduling, power control, quality measurements, hand-over etc.

A
Higher Application Traffic
layer
models Internet Protocols

Lower

layer
models Mobility Deployment

Radio Protocols
Transport RRM

Network Physical Layer

Propagation & Fading

Figure 6: Conceptual model of high and low level models of physical and logical
entities in the LTE simulator [17].
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It should be noted that there are also models of physical entities,
including for example mobile user equipment, eNodeB base stations and
physical antennas which are not illustrated in Figure 6 [17].

The simulator environment is implemented in Java and runs on Sun’s
standard Java Virtual Machine (JVM) [6] which enables effortless cross-
platform interoperability for operating systems (OS) which have a JVM
implementation [18].

Events and timers

The LTE simulator platform is event-driven and hence all processing is
handled using an event queue containing events that are scheduled to
be executed in the future. The main loop of the simulator pops events
from the queue, invokes them and updates the simulation logical time to
the event time. When the event-queue is empty simulation stops. This is
illustrated in Figure 7, where events are scheduled ahead of time and
are executed sequentially as the current simulation time is advanced.

| Current time (t)
| Execute event, increase simulation time to next event

Periodic (timer-generated) events

|
|
|
|
|
Events |

F———> Simulation

! logical time

Schedule (push) event (t1> t)
Schedule (push) event (t22 t1)

Figure 7: Scheduled events are executed according to logical simulation and time is
then advanced to the next event. [6]

Events in the simulation platform are low-level objects that are used to
control the timing and order of execution. Event objects are used once
and then thrown away. Event objects implement the Java Runnable
interface and hence may contain arbitrary Java code that may invoke
methods on other objects. Another convenient means of controlling
execution within the simulator platform involves logical timers that
perform a desired operation periodically. This makes timers very
suitable to execute operations associated to the periodic behaviour of
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LTE sub frames such as the reception of physical channels, scheduling of
transmissions and updating of radio propagation models [6].

LTE physical layer models

When user data is available for transmission from the higher layers, the
LTE MAC layer typically determines a transport format based on the
current channel quality and the amount of data to transmit. Then, the
LTE physical layer models set a suitable transmit power, modulation
and code rate. This transmit power is used to calculate the received
power and the interference by the propagation and interference models.
Finally, the physical layer models notify the higher layers using OK
flags to indicate successful reception or not. The relations and typical
interactions between higher layers, the physical layer as well as
propagation and interference models are conceptually illustrated in
Figure 8 [18].

Transport format

Transmit power Received power, interference

| |
Base station locations | | Mobile station location and

: : movement speed

Figure 8: Conceptual overview of interaction and relations between higher layers
and physical layers as well as propagation and interference models. [18]

The physical layer model used in LTE is an OFDM channel model used
for the downlink and a single-carrier channel model for the uplink. The
OFDM channel model contains sub-models that model a physical
channel receiver which calculates the Signal-to-Interference Ratio (SIR) for
each sub-band. A receiver model then combines the SIR wvalues,
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modulation format, and number of symbols, and computes the block
error probability (BLEP) value that is combined with a random number to
set the OK-flag sent to the MAC as illustrated in Figure 8 [18].

The uplink single-carrier channel has a corresponding functionality with
a consecutive set of sub-bands, a common modulation, and an evenly
distributed power per sub-band. Similar to the downlink, a SIR value is
first computed and is then mapped to a BLEP value, from which the OK
flag is obtained using a random number [18].

Simulation output

The LTE simulator environment uses an event-based logging system for
simulation output, supporting new log event handlers (derived from the
abstract class LogHandler) to be registered dynamically. Output
parameters to be logged are defined as data fields (LogField) in the
different simulation models and are registered in a centralized log
manager (Logger). The output parameters to be logged in a particular
scenario are registered before the simulation starts. During simulation
run-time Logltems generate events (LogEvents) as illustrated in Figure 9
when data field values are updated. Log events are then distributed to
all registered event handlers (LogHandlers) for the particular Logltem.
Hence, every log handler may define its own means of interpreting and
processing simulation output data through class specialization.

LogField A LogField is defined for every output parameter
associated with a Logltem.

L 5 Logltem : > Logger
Register Logltem at Logger
Register handler at Logltem
LogEvent > LogHandler

A LogEvent is created and passed
to all registered LogHandlers.

Call to log-method of Logltem instance, passing values to be logged
generates a LogEvent object.

Figure 9: Conceptual overview of the LTE simulator logging system. [18]

23



3.24

Parallel simulation - Parallel

computing for high performance

LTE radio network simulations 3 Simulation model
Hakan Andersson 2010-05-10

Previous profiling results of the simulation environment

Previous profiling and optimization work on the Ericsson Research LTE
simulator has been conducted in 2008 [4], improving run-time
performance and decreasing memory consumption. The results
obtained are useful within this work, but since the simulator application
is an ongoing project, the simulator has evolved and several changes
have been made. Hence, the results presented by L. Zhang [4] may not
be completely credible or relevant for the current implementation.
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Parallel Computing

One of the mechanisms generally adopted to increase performance,
efficiency and smooth running of a system is parallel processing. The
concept of parallel processing can simply be described as completing a
large task both quicker and more efficiently by dividing it into several
smaller subtasks and executing them simultaneously using more
resources. However, while applying parallel processing to a process, a
number of factors must be considered, for example: whether the task
can be performed in parallel, its cost effectiveness, synchronization of
the sub-tasks and communication among the resources [19].

Processor evolution and parallel architectures

Parallel hardware architectures for parallel computing have been the
subject of research and development for scientific purposes for several
decades as stated by M. O. Tokhi et al. [19], but now shared memory
multi-core processor architectures have been developed and
manufactured for use in standard desktop computers. This introduces
new software requirements in order to utilize multi-processor hardware
efficiently in contrast to the traditional processors which enabled higher
performance primarily through instruction level parallelism (ILP)
techniques such as: pipelining, caches, superscalar execution, out-of-
order execution etc. [20].

Modern research programs such as the Tera-scale Computing Research
Program initiated by Intel Corporation [21], has increased efforts to
advance computing technology by scaling multi-core architectures to
10s or 100s of cores and embracing a shift to parallel programming with
improved performance and increased energy-efficiency. This is merely
another indication that parallel processing and parallel programming is
becoming the future paradigm of computing and that software
developers and programmers have to adapt to the associated idioms to
create efficient and high performance applications.
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Fundamental components of parallel processing

The concept of parallel processing includes some basic terms and
fundamental characteristics. To understand parallel processing at the
implementation level it is vital to at least be familiar with these concepts.

The smallest unit of a program that is executed by one processor is
usually referred to as a task and consists of a sequence of instructions
that operate together as a group. Concurrency among processors is
exploited only among tasks and in order to be executed a task must be
mapped to a unit of execution (UoE, usually denoted UE, but UoE is
chosen as an acronym within the context of this thesis to avoid
confusion with user equipment which is denoted UE). The constitution of
an UoE may be a process or thread. Processes hold a collection of
resources such as a runtime stack, signal handlers, I/O descriptors etc.
that enables the execution of program instructions. A process can be
defined as “heavyweight” and has its own address space, while a thread
may be considered “light-weight”, shares resources and belongs to a
process.

A parallel program can generally be said to be composed of a number of
UoEs each executing a subset of tasks. UoEs usually require
synchronization and communication between them when they are
executed on a physical processor, more generically described as a
processing element (PE). Using the term PE is a convenient way to
describe parallel system processing hardware as the environment may
involve different types of processing hardware or may consist of a
distributed processing network of several machines [5].

If the number of UoEs in a program is more than the number of PEs,
more than one UoE is assigned to some or all of the PEs. On the other
hand, if the number of UoEs is less than the number of PEs, some PEs
are not assigned UoEs and remain idle during the execution of the
program or are assigned to a PE when it becomes available depending
on the scheduling algorithm [5].

There are several levels of applicable parallelism at various processing
levels in a parallel program, mainly on the basis of computational grain
size, usually referred to as granularity. M. O. Tokhi et al. [19] defines five
levels of parallelism: job (program) level, subprogram level, procedure
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level, loop level, instruction (expression) level and bit level as illustrated
in Figure 10 [19].

Course grain

~

parallelism >~ Medium grain
Procedure level
/
A
Loop level
Increasing
communication
demand and Expression level > Fine grain
scheduling
overhead
Bit level
v J

Figure 10: Levels of parallelism according to taxonomy of M. O. Tokhi et al. [19].

The highest level of parallelism occurs if multiple jobs/programs are
executed concurrently, whereas the grain size can be as high as tens of
thousands of instructions in a single program. However, the lower the
granularity, the higher the demand regarding communication and
scheduling. This generates considerable overhead for very fine-grained
parallelism.

Most algorithms are described as sequential algorithms. Hence these
algorithms must be parallelized to be executed on a parallel architecture.
The goal of parallelization is to obtain high performance and increased
speed over the best sequential program that solves the same problem.
This requires efficient load balancing among Pes and a reduction in
communication overhead and synchronization. The steps involved in
parallelizing a sequential algorithm are as stated by [19]:

e Decomposition of the total computation into an appropriate
number of tasks. Decomposition has a substantial impact on the
performance of a parallel process and to ensure better
performance all processes are required to be kept busy as much
of time as possible through efficient decomposition.
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e Assigning tasks to UoEs, in such a way that workload is balanced
among UoEs (load balancing) and interprocess communication
and runtime overhead are minimized. Load balancing primarily
concerns data access, computation and communication while
reduced interprocess communication is very important in order
to achieve better performance especially when a number of PEs
are involved in the parallel execution of an algorithm.

e Orchestration, involves synchronization and specification of data
exchange among processes through data structure organization
and task scheduling. The main objective with this step is to
reduce the cost of communication and synchronization,
preserving the locality of data reference and reducing the
overhead of parallelism management.

e Mapping UEs to PEs for execution can be done manually by the
programmer or with the help of an appropriate scheduling
algorithm and operating system.

Performance metrics for parallel computing

Parallel processing has several advantages over sequential processing:
decreased execution time, better scalability and lower cost-to-
performance ratio. Parallel processing is therefore able to handle larger
tasks. However, these advantages are not easily attainable. The speedup
of a program using multiple processors or multiple processor cores for
parallel computing is limited by the execution time necessary for the
most time-consuming sequential fraction of the program. Regardless of
how many processors are devoted to a parallelized execution of a
program, the minimal execution time cannot be less than the sequential
execution of the part that cannot be parallelized. Several theories have
therefore been proposed to estimate the performance gains of
parallelizing parts of a program [19].

Speedup
The theoretical maximum parallel speedup factor (S,) for a homogenous
architecture is defined as the ratio of the execution time (T;) on a single

processor, to the execution time (T,) on N processors as given by:
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Sy =— 4.1
VI (4.1)

The maximum ideal speedup for a processor architecture with N
identical processors is N. In practice the speedup is much less, since
conflicts over memory access, communication delays, inefficiency in
algorithms etc. may cause the processor to not perform in an ideal
manner. However it is possible to achieve speedup above the ideal
speedup, known as super linear speedup, due to anomalies in
programming, compilation, architecture, cache usage etc. The possibility
of achieving super linear speedup is highest on multiprocessor systems
with sophisticated cache and registry management as highlighted by M.
O. Tokhi et al. in [19].

Efficiency
The efficiency (En) of a homogeneous parallel system is defined as:

T,
E, =2x.100% = 1
N

-100% (4.2)

'TN

where N is the number of processors, Sy is the speedup factor using N
processors, 11 is the execution time on a single processor and T is the
execution time on N processors. Efficiency can be interpreted as a
measurement of the average utilization of the N processors, expressed as
a percentage. This measure also allows for a uniform comparison of the
various speedups obtained from systems equipped with different
numbers of processors. It has been illustrated that efficiency is related to
the granularity of the system [19].

Amdahl’s law

To determine the maximum expected improvement to an overall system
when only part of the system is improved, Amdahl’s law as stated by
Gene Amdahl [22] defines a fundamental rule derived from equation
(4.1). It is a model for the relationship between the expected speedup of
a parallelized implementation of an algorithm relative to the
corresponding sequential algorithm under the assumption that the
problem size remains the same when parallelized.
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Amdahl’s law states that the maximum theoretical speedup factor Smax
for an algorithm or program executed on a parallel architecture is given

by:

T B 1 ~ N
nT+(1—77)T1 ,7+(1—77) n(N -1)+1
! N N

S <

T
MAX — TN

(4.3)

where e [0,1] is the proportion of the program that is executed
sequentially, (1-7) is the proportion that can be executed in parallel and
N (N=1) is the number of processors that executes the parallel part. Note
that for the limit when N—eo, it is evident that Smax—1/7. This indicates
that the cost-to-performance ratio rapidly falls as N is increased, even
for a small component of 7. For this reason, parallel computing is only
profitable for either small numbers of processors or problems with very
high values of (1-7), so-called embarrassingly parallel problems [19].

It is also noticeable that his analysis is rather primitive and neglects
other crucial performance factors such as memory bandwidth, I/O
bandwidth and only holds true for homogenous architectures with a
fixed load. In practice, creating additional parallel tasks may increase
the overhead and the chances for there to be contention regarding
shared resources. On the other hand, if the original serial computation is
limited by resources other than the availability of CPU cycles, the actual
performance could be much better than Amdahl’s law would predict

[5].

Parallel programming

The method of multitasking has long been part of all modern operating
systems in which multiple processes share common processing
resources such as the CPU. In the case of a uniprocessor system this
means that the processing unit has control transferred from one process
to another causing their instructions to be interleaved at stages of their
execution, also known as context-switching or time-sharing. In the case of
a multiprocessor environment this means that more than one process
can proceed independently with its execution process. On the other
hand, within a multiprocessing environment, processes of a single
program can be executed concurrently in a number of processors.
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However, processes may interact and affect each other, based on the
data dependencies and control dependencies of the process. This
addresses the need to provide additional effort in relation to process
mapping, scheduling and interprocess synchronization in order to
execute a parallel program in a parallel architecture compared to
executing a sequential program in a uniprocessor environment [19].

Multithreading

Multithreading for both uniprocessor and multiprocessor computing is
a growing technology for generic parallel and distributed computing
and is currently a subject of widespread interest among scientists and
professional software developers. Threads reduce overheads by sharing
fundamental parts, for example data, memory stack and file I/O.
Context-switching between threads is also typically faster than context-
switching between processes since memory access is reduced [23].

Dependency is one of the key issues in multithreading for high-
performance computing. Data dependency between two blocks or
statements requires memory access time and in practice increasing
dependencies implies increasing access time which degrades
performance. Thus it is essential to study data dependencies in an
algorithm intended for a concurrent thread implementation. Detection
of multithreading potentials within an application involves discovering
sets of computations that can be performed simultaneously. The
approach to parallel multithreading is thus based on the study of data
dependencies [19].

Synchronization

Synchronization is another key issue of concurrent multithreading. The
performance of the synchronization mechanism of a multiprocessor
determines the granularity of parallelism that can be exploited on that
machine. Communication between threads typically involves reading
and writing to a shared resource and synchronization is required to
guarantee that two processes or threads do not attempt to access the
same resource simultaneously causing a system failure or producing
incorrect results. It is also vital to design algorithms that minimize the
requirement for synchronization so the threads can solve the actual
problem instead of spending their time executing synchronization code,
causing synchronization overhead.
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In general there are two types of synchronization: synchronization for
precedence and synchronization for mutual exclusion. The former
method guarantees that one event does not begin until another event
has finished, while the latter guarantees that only one process can access
the critical section where the data are shared and must be manipulated.
This is achieved using mechanism such as semaphores, which can be
described as a locking mechanism to lock critical resources,
mutexes/condition variables, event flags and message queues. For time
critical systems it may also be required to perform thread scheduling to
avoid situations including for example a high-priority thread waiting for
a low-priority thread to release a lock on some critical resource [19].

Algorithm analysis and design

In practice more than one algorithm exists for solving a specific
problem. The choice of the most efficient algorithm for a given problem
and for a specific computer is a difficult task and depends on many
factors, including data and control dependencies, granularity and
regularity of the algorithm [19].

Data and control dependency

Data dependency is a key issue in algorithm analysis for real-time and
time-critical high performance computing. Analyzing data dependency
involves studying how to reduce block or statement dependencies, how
to reduce memory access time and what the impact of data
dependencies is on interprocess communication. The main classes of
dependencies are data dependence and control dependence.
Dependence indicates the order in which results must be calculated. The
dependence also sets an upper bound on how much parallelism can
possibly be exploited for a specific scenario.

Detection of parallelism in an application involves determining sets of
computations that can be performed simultaneously. The approach to
parallelism is based on the study of data dependencies. The presence of
dependence between two computations implies that they cannot be
performed in parallel. In general it can be stated that the fewer the
dependencies, the greater the parallelism. Many algorithms have regular
data dependencies that repeat throughout the set of computations in the
algorithm. For such algorithms, dependencies can be concisely
described mathematically and be easily manipulated. However, there
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are algorithms for which dependencies vary from one computation to
another and these algorithms are more difficult to analyse. When two or
more algorithms have similar dependencies, it means that they exhibit
similar parallel properties.

A control dependency, on the other hand, determines the ordering of an
instruction with respect to a branch instruction so that the instruction is
executed in the correct program order and only at the appropriate time.
Control dependency is preserved by two properties in a simple
sequential computing:

e Instructions executed in program order, ensuring that an
instruction that occurs before branching is executed before the
branch control point.

e The detection of control ensures that an instruction that is control
dependent on a branch is not executed until the branch direction
is known.

The presence of dependencies indicates complexity in an algorithm and
in turn communication overhead in a parallel processing context [19].

Granularity and regularity

Granularity and regularity are two important issues of algorithm analysis
and design for high-performance sequential and parallel computing. In
particular the study of parallelism includes interprocess communication,
issues of granularity of the algorithm and of the hardware in addition to
the regularity of the algorithm. Hardware granularity is defined as the
ratio of computational performance over the communication
performance of each processor within the architecture, according to:

Hardware granularity = Runtime length of task = R 4.4)

Communication overhead C

where R is the actual computation time of a task and C is the amount of
time due to communication overhead during the execution of the
corresponding task. When the hardware granularity is very small, it is
unprofitable to use parallelism. On the other hand, when the hardware
granularity is very large, parallelism is potentially profitable. A
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characteristic of fine-grained processors is that they have fast inter-
processor communication and can therefore tolerate small task sizes and
still maintain a satisfactorily high hardware granularity or R/C ratio.
However, medium-grain or course-grain processors with slower inter-
processor communication will produce correspondingly smaller
hardware granularity (R/C ratio) if their task sizes are also small.

Task granularity can be defined as the ratio of computational demand, i.e.
the time required to execute the task without any communication
overhead over the communication demand (actual communication time)
during execution of the corresponding task. Typically a high
compute/communication ratio is desirable. The concept of task
granularity can also be viewed in terms of compute time per task. When
this is large it is a course-grain task implementation. When it is small it
is a fine-grain task implementation. Although course-granularity may
ignore potential parallelism, partitioning a problem into the finest
possible granularity does not necessarily lead to the fastest solution, as
maximum parallelism also has a maximum overhead, particularly due
to increased data dependencies. Therefore it is essential to choose an
algorithm granularity that balances useful parallel computation against
communication and other overheads considering the system at hand.

Generally algorithms can be classified on the basis of their
characteristics as regular, irregular and mixed. Regularity is a term used
to describe the degree of uniformity in the execution thread of the
computation. In addition to their own characteristics, the regularity or
the irregularity of algorithms also depends on how the code is
developed for implementation. Thus, it is essential to explore the
characteristics of an algorithm, hardware and coding style for
computation [19].

Design patterns for parallel computing

In the book Patterns for parallel programming [5], T. G. Mattson et al.
propose a design pattern for algorithm analysis and dealing with
parallelization of problems by introducing a pattern language. Design
patterns have long been used in system development and programming
as a means of tackling problems in a unified and standardized way,
hence increasing both the readability and writeability of application
source code. Using design patterns also decreases the chance of
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performing common mistakes and solves problems using proven
methods.

The patterns introduced by Timothy G. Mattson et al. [5] involve finding
concurrency, algorithm structure, supporting structures and
implementation mechanisms. Explaining useful generic patterns falls
out the scope of this thesis, but design patterns have proved to be a
convenient way of introducing parallel programming and concurrent
algorithm design to traditional programmers in order to reduce the
chance of errors and to producing consistent code [5].

Java technologies and frameworks for parallel computing

Multithreaded applications, parallel computing and distributed
computing becomes a possibility in Java both through the native Java
concurrency API [24] as well as third-party frameworks and libraries,
both free and commercial. There are also attempts to introduce
parallelism through specialized compilers and Java Virtual Machine
(JVM) implementations.

Java concurrency API

The Java 2 platform includes a package of concurrency utilities (CU) [24]
since the release of the Java version 1.5. This package contains classes
which are designed to be used as building blocks when building
multithreaded applications. For example, the Java CU includes several
thread-pool implementations, a framework for asynchronous execution
of tasks, a host of collection classes optimized for concurrent access and
synchronization utilities such as counting semaphores, atomic variables,
locks and condition variables. The Task Scheduling Framework of Java CU
also contains the Executor framework providing a generalized interface
for invocation, scheduling, execution and control of asynchronous tasks.
The Java CU API also contains a wide range of thread-safe data
structures to ease synchronization issues such as atomic variables and
blocking queues.

The current Java CU API can be seen as supporting course-grain
parallelism within Java applications. However, B Goetz [25] states that
when JDK 7 is released it will contain a fork-join framework with
support for fine-grained parallelism through optimized worker-thread
implementations [25].
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Parallel Java (PJ)

Parallel Java (P]) [26] is a free API and middleware for parallel
programming Java on shared memory multiprocessor (SMP) parallel
computers, cluster parallel computers and hybrid SMP cluster parallel
computers. PJ is licensed under the terms of the GNU General Public
License (GPL) and was primarily developed by Prof. Alan Kaminsky,
Rochester Institute of Technology for educational purposes. The API
includes class support for common patterns in scientific parallel
computing including parallel for-loops, parallel matrix operations,
concurrent task/job execution and scheduling. The framework also
contains support for interprocess-communication vital for parallel
computer cluster processing [26].

Java Parallel Processing Framework (JPPF)

Java Parallel Processing Framework (JPPF) [27] is an open source grid
computing platform written in Java that aims at simplifying parallel
execution of applications. The framework is task-oriented and supports
transparent, abstracted execution of tasks/jobs over a computer cluster.
Framework configuration files are used to specify host and client
configurations. Remote execution is achieved through specific drivers
and node packages running on an Apache Ant application server which
must be installed on all systems of the processing cluster [27].

JOMP

JOMP [28] is a research project whose goal is to define and implement a
set of directives and library routines for shared memory parallel
programming in Java as close as possible to the C/C++ OpenMP syntax.
JOMP is a prototype reference implementation that consists of a
compiler and a runtime library. The compiler translates Java source
code with directive calls to the JOMP runtime library, which in turn uses
Java threads to implement parallelism. JOMP is pure Java and hence can
be run on any JVM [28].

MANTA compiler

Manta is a native Java compiler that compiles Java source codes to x86
machine-code executables. The aim of the compiler is to beat the
performance of all current Java implementations and support high
performance parallel distributed computing. Currently it contains a
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Remote Method Invocation (RMI) implementation that is currently about
30 times faster than standard implementations. Manta supports the
complete Java 1.1 language (not 1.2, 1.3 etc.) including exceptions,
garbage collection and dynamic class loading. Manta also supports
some Java extensions, such as JavaParty programming model, replicated
objects and efficient divide and conquer parallelism. A distributed shared
memory (DSM) model is built upon Manta, called Jackal. However there
is currently no JAR-package support and no Java Swing support [29].

Javab compiler

In Javab Manual [30] A. J.C. Bik and D. B. Gannon present a byte-code
parallelization approach for automatic loop parallelization in Java.
Implicit parallelism is made explicit by standard JVM multithreading
mechanisms. A prototype implementation of a compiler written in C,
based on this technique is available online [31]. However, the compiler
has only been tested and verified for simple loop algorithms with clear
data dependencies. For the particular array-based algorithm examples
[30], speed-up gains in range 2 to 3 have been obtained for high
numbers of iteration [30].

Alternative technologies for parallel and concurrent
computations

Apart from multithreading, a number of traditional and emerging
technologies exist for parallel computing that require to be mentioned.
Symmetric multiprocessing (SMP) is a computer system with multiple
identical processors that share memory and are connected via a bus. Bus
contention prevents bus architectures from scaling. As a result SMPs
generally do not comprise more than 32 processors, but are very cost
effective [20].

Distributed computers or distributed memory multiprocessor systems
are systems in which the processing elements are connected by a
network. Distributed computers are highly scalable. Cluster computing
is a form of distributed computer where loosely coupled computers
work together as standalone machines interconnected by a network.
However, load balancing is a critical problem in cluster computing [32].

A massively parallel processor (MPP) is a single computer with many
networked processors. MPPs have many of the same characteristics as
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clusters, but MPPs have specialized interconnected networks. MPPs also
tend to be larger than clusters, typically having more than 100
processors. In MPP each CPU contains its own memory and copy of the
operating system and application [20].

Grid computing is the most distributed form of parallel computing and
makes use of different computers communicating over the Internet to
work on a given problem. Because of the low bandwidth and extremely
high latency, grid computing typically deals only with so called
embarrassingly parallel problems. Most grid computing applications
use middleware software to manage network resources [33].

Specialized  digital ~ signal  processors  (DPSs) are specialized
microprocessors with optimized architecture for fast operational needs
of digital signal processing. DSPs are typically used for a specific
application or may be integrated in general purpose computers to run in
parallel with the CPU in order to unload the CPU for certain types of
computations [34].

The processing unit of video cards, usually referred to as graphics
processing unit (GPU) are usually specialized SIMD (according to Flynn’s
taxonomy) architecture processors where each processing unit executes
the same instructions at any given clock cycle. However each processing
unit can operate on different data elements. This is particularly useful
when processing graphics and images as each pixel can be processed in
the same manner and computations usually involve matrix operations.
[32] As processing power of parallel GPUs has increased so called
general purpose computing on the GPU (GPGPU) has started to compete
with CPU processing. NVIDIA has introduced the API extension
Compute Unified Device Architecture (CUDA) [35] framework to allow
specialized C functions to run on the GPUs stream processors and Open
Computing Languge (OpenCL) [36] is an open source initiative by the
Kronos Group (also OpenGL, OpenML) aimed at abstracting CPU and
GPU computations.

CUDA currently is targeted for C/C++ languages but Java bindings are
available in jCUDA [37] API which uses JBI to communicate with a C
library.
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Research in parallel simulations

Parallel discrete-event simulation (PDES) has gained much attention
during the last two decades and a reflection of this is the number of
researchers who have wused either conservative or optimistic
synchronization to successfully simulate their applications. With the
extensive refinement in these methods, synchronization has emerged to
be the single largest overhead in distributed simulation [38].

Parallel simulation approaches

A. Hind [39] addresses the problems of parallel multiprocessor
simulation in contrast to distributed parallel simulation. He states that
excessive processing and huge memory requirements forces simulation
to be executed in distributed memory computing clusters, but points out
that multiprocessor systems may be very well suited for parallel
simulation. Instead of message passing algorithms and distributed
memory, shared memory structures address the data access
synchronization and cache coherency problems. Furthermore, A. Hind
[39] categorizes simulation model decomposition to include five
different approaches: parallelizing compilers, distributed experiments,
distributed functions, distributed events and distributed model
components, but also points out the problems associated with each of
these approaches.

Automated parallel compilers seldom offer much gain from parallelization
as the problem is modelled according to a sequential model in a
sequential language and compiled to run on multiprocessor hardware.
The biggest advantage of this approach is that it is transparent to the
user.

Distributed experiments may be conducted by running several separate
simulations on separate processors in parallel. This is particularly
efficient for stochastic simulations, as results can be averaged at the end
of the run. This approach is extremely efficient as no co-ordination is
required between processors, with the exception of results averaging
and presentation. Hence, for N processors this may give close to ideal
speed-up of N. The only overhead is loading the model into each
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processor. However in terms of hardware, distributed experiments may
not be possible due to the high memory requirements.

Distributed functions involve different tasks of a simulation being placed
on separate processors. For instance, processors may be dedicated to
random number generation, event list processing, etc. The processor
may be identical or may be tailored to each individual function. The
advantages associated with this model are its freedom from the
possibility of deadlock and its potential scalability. The architecture may
also be made transparent to the user as each function code can be
divided and placed within each processor fairly easy. The disadvantage
is the communication overhead between functional processors, which
may become the limiting factor in relation to performance. This
approach also fails to exploit any parallelism in the actual system or
physical entities being modelled. The law of diminishing returns sets in
at an early stage using this approach.

The distributed events approach uses a global event list, as in sequential
simulation, to schedule available processors to process the next event on
the list. The difficulty is maintaining consistency in the simulation as the
next event available on the list may be pre-empted by other events
currently being processed by other processors. The need for global
simulation control points significantly towards the use of shared
memory multiprocessor architectures so that all processors can have
access to the global event list. The results for this approach appear to
indicate that it is reasonable if there are only a small number of
processes required and a large amount of global information used by
the components of the system.

The most popular method for parallel simulation is model decomposition.
Decomposing a simulator model means that the simulation model is
divided into a number of sub-components that are then assigned to
processes. One or many processes can then be assigned to execute on
each processor. Model decomposition usually follows the logical
structure of the real system being simulated. Therefore this approach
can take advantage of any parallelism inherent in the system to be
modelled, so it appears to promise significant speed-up on a
multiprocessor system. However, this only holds true if the simulation
does not require a significant amount of global information and control.
The major overhead is communication between processes executing on
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different processors. In a shared memory environment this can be
handled by global shared variables or message passing. The other major
problem associated with this method is the synchronization of events
during simulation.

Synchronization schemes in discrete-event parallel simulation can be
divided to two groups: conservative approaches and optimistic
approaches. In the conservative approaches causality problems are
avoided by relying on some strategy of determining which events are
safe to process. Generally conservative approaches can provide good
performance with sparsely connected systems which have less
opportunity for deadlocks and/or an application which contains good
look-ahead properties. The worst case for a conservative
synchronization approach is to be forced into almost sequential
operation coupled with the synchronization mechanism overheads.

Optimistic approaches allow causality errors rather than avoiding them,
but when they are detected, a roll-back mechanism is employed in order
to recover which is achieved by re-simulating from the time of the error.
Therefore optimistic approaches do not require to determine whether or
not it is safe to proceed, they only need to detect the error and recover.
The advantage of this is that the simulator can exploit the parallelism
fully in applications which may produce causality errors, but in reality
rarely do. Obviously, the greater the amount of causality errors that a
simulation produces, the greater the synchronization overhead.

Roll-back is accomplished by undoing all the effects of all events that
have been processed prematurely and is accomplished by returning to
the old correct state which is taken from a store of previous states. In
addition, previously sent messages must be unsent, typically by sending
anti-messages that cancel the effect of the original. Time warp
approaches such as the one described in this case do not lend
themselves to fine-grained parallelism due to the memory overheads
required. Each process requires substantial memory capacity as well as
the mechanism for restoring to the simulation state. Also, it is unproven
that a continuous cycle of roll-backs may be possible for a particular
simulation [39].
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Evolution of parallel discrete-event simulation

Ditferent kinds of relaxation to causality (or synchronization) have been
proposed such as the NoTime-simulator [38] as an approach to make
optimistic, conservative simulations more efficient by reducing
synchronization. Most research focuses on distributed grid or cluster
computing with high communication costs instead of considering
simulation on a multi- or many-core processor. However, many
problems are common as the problem solving algorithms are distributed
among threads in a multiprocessor environment and hence require
synchronization.

Object-oriented approaches for distributed parallel simulations have
been proposed, introducing concepts such as Abstract Parallel Machines
[40] to promote key software engineering qualities including reusability
and extendibility while still fulfilling parallel processing requirements
such as scalability, portability and performance [40].

A conservative implementation of a very basic model for high
performance parallel simulation of telecommunication networks is
presented in [41]. The performance of a distributed simulation program
on a multiprocessor machine simulating a packet-oriented CCIT
Signalling System No. 7 (SS7) system was examined and implemented
through a queuing network. The results indicated that the benefit of
parallelism increased as the simulation time was increased and
converged to the number of processors within the system [41].

Efficiency of multiprocessor systems is directly dependent on the load
balance, as addressed in 1997 by Azzedine Boukerche and Sajal K. Das
in A Dynamic Load Balancing Algorithm for Conservative Parallel
Simulations [42]. They proposed an algorithm for dynamic load
balancing for conservative parallel simulations, based on null-messages
to avoid deadlocks and to increase parallelism of the simulation. The
primary goal of this work was to minimize synchronization overhead,
which resembles the work carried out in the NoTime-simulator [38], but
achieving this through efficient utilization of hardware. They state in
their work that their dynamic load balancing algorithm considerably
reduces synchronization overhead.

P. Heidelberger and D. Nicol address in Building Parallel Simulations
From Serial Simulators [43] that for PDES to have a practical impact,
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PDES tools must hide the complexities of time synchronization from
users and provide capabilities approaching those of industrial quality
serial simulators. They successfully implemented a message-based
distributed MPI-based parallel simulation of a mobile cellular network
model, with a speedup linear to the number of processors using a high
degree of look-ahead [43].

A framework called SWiMNet is presented in Partitioning Parallel
Simulation of Wireless Networks [44], which is a simulation framework for
wireless and mobile telecommunication systems, that uses a two stage
parallel simulation: conservative scheme at stage 1 and time warp
(optimistic approach) at stage 2. In the first stage, the simulation model
uses a mobile host partition and in the second stage a cell-based
partitioning. Furthermore the simulation uses optimistic approaches by
pre-calculating all possible events and using roll-backs. Their work
indicates that careful partitioning can have a significant impact on
performance, but addresses the critical importance of dynamic load
balancing using a round-robin algorithm [44].

In Exploring the Effects of Hyper-Threading on Parallel Simulation [45] L.
Bononi et al. explore the effects of hyper-threading on parallel
simulation middleware. The conclusion in this work states that Intel
Hyper-Threading techniques successfully reduced execution-time, but
also increased system efficiency and scalability [45].

To conclude this chapter, it should be stated that the most successful
examples of parallel simulation models were developed for parallel
execution from the beginning, but in Case Study: Parallelizing a Sequential
Simulation Model [46] a case study of parallelizing a sequential
simulation model has been presented. The approach in this work was
communication topology simplification, look-ahead specification and
modelling changes to eliminate performance bottlenecks which turned
out to be a successful solution for the particular problem [46].
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Methodology

To evaluate the gains of multithreaded LTE simulations executing on
multi-processor hardware, a multithreaded prototype must be designed
and implemented. It is vital to pay great attention to data and control
dependencies when re-designing the current sequential simulator in
order to preserve deterministic behavior. Extensive experiments are
then required to evaluate the performance of the prototype
implementation. The methodology used to consider the evaluation of
the parallel LTE simulator prototype is described in this chapter.

Experimental methodology

In order to determine task granularity in terms of execution time and to
tind CPU bottlenecks in the simulator application, a profiling tool
should be used to collect profiling data during the design phase of a
multithreaded simulator. Application profiling is carried out with
JProfiler from ej-technologies [47], which is a convenient tool for
identifying CPU “hot spots”, call trees and memory usage, but may
produce incorrect results if used to measure actual execution time in
experimental evaluation. The reason for this is that for sequential
simulation one processor may be dedicated to the simulator and one to
the profiler application. However, for parallel simulation all processors
may be used for executing simulations and hence the profiler and
simulator will compete for CPU resources. A better approach is to use
high performance timers to perform execution time measurements,
which minimizes profiling overhead. Actual time measurements should
be normalized to reduce system hardware dependency from the
achieved results.

It is vital for the credibility of the profiling results that several different
experiments with different simulation scenarios are executed and that
experiments are repeated to indicate variations in execution time. The
motivation to use different scenarios is to trigger different
computational models in the simulator or in terms of parallel processing
result in different task granularities.
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Experiments should also be performed on different systems with
different hardware configurations so as to indicate anomalies in
performance that are related to different processors. Differences in
architecture, clock frequency and cache size may result in different
hardware granularity as defined by equation (4.4). Three different systems
will be used for the experiments (see Appendix A for details):

e System A — Equipped with an Intel® Core™2 6600 @ 2.40 GHz
processor, this gives a total of 2 processor cores. Linux 64-bit OS.

e System B — Equipped with an Intel® Core™?2 Extreme CPU X9650
@ 3.00 GHz, this gives a total of 4 processor cores. Windows Vista
32-bit OS.

e System C — Equipped with two Intel® Xeon™ CPU E5440 @ 3.00
GHz, this gives a total of 8 processor cores. Linux 64-bit OS.

Performance experiments and evaluation criteria

To evaluate the performance of multithreaded LTE simulation as
compared to sequential simulation and parallel jobs (distributed
experiments), a number of evaluation metrics according to the parallel
processing metrics described by M. O. Tokhi [19] are used.

To measure and evaluate the speedup of a parallel implementation
versus sequential implementation, execution time as a function of the
number of threads (or utilized processors) should be measured. The
number of threads should not exceed the number of available processors
N of the system since this will only generate additional overhead. Only a
single simulation process should be run in each case. This will provide
an indication of how the parallel simulator prototype performance is
related to the number of available processors. The parallel speedup S, as

defined by equation 4.1 is useful to clearly illustrate the relation between
the parallel and sequential versions as more processors (threads) are
added. Hence, this experiment also requires that the execution time for
the sequential simulator is also measured for the same scenario.

To minimize run-time length of current LTE simulations at Ericsson
Research, N independent sequential simulation processes are executed
concurrently on a machine with N processors. However, this approach
may lead to system bandwidth problems, considering system bus
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bandwidth and system memory bandwidth. To evaluate run-time
length efficiency, N concurrent processes should be started, executing N
independent sequential simulators. The sum of the execution times of
the N processes should be measured and compared to the execution
time involved in running N multithreaded simulations in sequence. The
result from such an experiment will indicate whether the parallel
prototype executes faster than the sequential version. This experiment is
important since it will indicate whether the multithreaded prototype is
useful for use in LTE research simulation work or whether it requires
further development.

In order to analyze the overhead of multithreaded simulation as well as
parallel jobs, the actual measured execution times should be compared
to an ideal estimate derived from Amdahl’s law. This will make it
possible to determine the ratio between the CPU-time used for the
actual computations and the CPU-time caused by the overhead:
memory access, synchronization, race conditions etc.

To illustrate a summary of the experiments to be performed, the
experiments presented in Table 1 should be executed on systems A, B, C
(see Appendix A) respectively.

Table 1: The set of experiments to perform on systems A, B and C respectively. The
asterisk (*) means that the experiment should be performed for both parallel and

sequential implementations.

Number of concurrent processes

1 2 3 4 5 6 7 8

Number of 1 | ABC* | ABC BC C C
concurrently | 2 | ABC B C
executing 3 B
threads per 4 | BC C
process. 5

6 C

7

8 C

In Table 1 only the row with a single thread implies that a sequential
simulator should be used. For all other experiments the parallel
prototype simulator should be used. A special case is ABC* which
indicates that the experiment should be performed for all systems and
both parallel and sequential implementations. The intention with
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regards to this is to be able to measure the overhead of the parallel
implementation executing as a sequential simulator. All simulation
experiments have a simulation time (logical time) of 10.0 seconds. The
reason for this is to maintain the execution time at a feasible level, while
still minimizing the impact of start-up and memory allocation routines.

Simulation scenarios

Profiling results and analysis as well as experimental results will be
based on four different simulation scenarios, further referred to as
scenario I — detailed radio model (DRM), scenario II - file upload, scenario 1II -
file download and scenario IV - wvoice-over-IP (VoIP). The scenarios are
designed to use a great deal of resources and trigger computation
intensive models and functions. The reason for this is that the possible
gain of parallelization is particularly interesting for very computation
intensive scenarios as these require the longest execution times due to a
large task granularity. All scenarios involve seven base stations (eNodeB)
and have three cells per base station, which gives a total number of 21
cells. Each cell has a radius of 166.66 meters. A regular deployment
propagation model is used.

The simulation scenarios have an initial number of users generated
when simulation starts and that number is then fixed. Users are
configured to have two antennas. Downlink and uplink frequency
bands are set to 9 MHz if not stated otherwise with 50 sub-bands using a
carrier frequency of 2000 MHz.

The differences between the scenarios are stated below:

e Scenario I — Detailed radio model (DRM) — This scenario has initially
630 users which will generate fixed size FIP downlink traffic.
This scenario is modeled using a very detailed radio model and
hence is very computationally expensive.

e Scenario Il - File upload — This scenario has initially 630 users
which will generate fixed size FIP uplink traffic and is based on a
simpler radio model than the DRM scenario.

e Scenario 1II - File download — This scenario has initially 630 users
which will generate fixed size FTP downlink traffic and is based
on a simpler radio model than the DRM scenario.
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e Scenario IV - VoIP — This scenario has initially 3150 users which
will generate voice-over-IP (VolIP) data traffic, which typically
consists of small, but many data packets and traffic bursts. The
radio frequency bandwidth is set to 4.5 MHz for both the
downlink and uplink bands which use 25 sub-bands each. This
scenario is based on a simpler radio model than the DRM
scenario.

Environment and physical resources

Java and the Java Development Kit (JDK) 1.6 will be used as the language
of implementation (including JVM 1.6 for executing experiments) and
Eclipse 3.5.0 will be used as the primary integrated development
environment (IDE) for development. Subversion 1.6 for Eclipse will be
used for version control. System A used for experimental evaluation is
also used as the system for development while systems B and C will be
used remotely.

The thesis and associated work will be carried-out at Ericsson Research,
Linkoping, Sweden, which pursues research within the area of wireless
access networks and radio communications. Hence expertise within the
area of radio networks, radio network modeling and
telecommunications will be available for consultancy throughout the
project. Niclas Wiberg, Ph. D. in information theory and Ericsson expert
in radio network and simulation, Kristina Jersenius Ericsson research
engineer in radio networks and also Rahim Rahmani, Mid Sweden
University will supervise this work. The project involves the handling of
confidential information and resources vital to Ericsson, which makes it
impossible to cover all details of the simulation platform in a public
report. However the information published in this report should
provide sufficient illustration in order to describe the simulator aspects
that affect the parallelization task and provide the reader with sufficient
information to understand this work.

Verification of program correctness

The LTE simulator currently used at Ericsson Research is deterministic
[18]. This means that for a given input seed X, the same output value Y
is always produced. This holds true if the simulator is executed
repeatedly with the same input seed X on the same system, but
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anomalies may be present between different systems. The variation
between systems is platform and hardware dependent and is most likely
to occur due to floating-point round-off anomalies between processors
[48]. However, in this thesis deterministic simulation is defined as a
reproducible result Y for a given input X on a specific system.

Deterministic simulation involves several problems when executed in a
non-deterministic manner. For this reason, it is critical to determine a
convenient method which guarantees an equal output from both
parallel and sequential simulation, as well as verifying the deterministic
behavior of the parallel prototype as stated in problem definition of this
thesis. Since simulation output by definition is deterministic, sequential
and parallel simulation outputs can be compared in order to verify
program correctness. Hence, a mechanism or tool capable of detecting
irregularities in the simulation output must be created, which is capable
of detecting differences in both the output order and the actual values in
order to verify program correctness.

Evaluation of software design transparency and usability

As stated in the section for the initial requirements of this thesis (see
section 1.4) the multithreaded prototype should be implemented as
transparently as possible to the developer (user). This involves both
changes to the current simulator design as well as changes to the ways
of thinking when implementing simulation models that are targets for
asynchronous execution. In order to evaluate whether the introduction
of multithreading constructs into the current design is transparent, the
proposed software constructs should be reviewed by a small group of
developers who work with the simulator on a daily basis as well as a
small group of non-developers who work with software development
outside of Ericsson. These groups of people will be consulted in order to
answer a questionnaire covering their previous experience of parallel
programming, questions considering their thoughts about the design as
well as some complementary tests. The results obtained of such a
questionnaire might provide a hint of the transparency and usability of
the proposed solution. The questionnaire used for evaluation is
presented in Appendix B.
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To investigate and evaluate the performance gains of multithreaded LTE
simulation in contrast to sequential simulation or running concurrent
independent parallel processes, a parallel LTE simulator prototype must
be designed and implemented. This chapter describes the design
considerations taken in order to parallelize algorithms in the LTE
physical layer of the simulation model.

Analysis of requirements and design considerations

In the introduction of this report, section 1.4, several minimum
requirements involving design issues are stated. These requirements
include the following to be designed and implemented for a prototype
simulator:

e Design and implement a multithreaded simulator that exploits
parallelism in physical layer models.

e Provide transparent implementation of concurrency constructs.

e Design tools for the verification of deterministic behaviour and
program correctness.

A wide range of APIs exist for multithreading and distributed
parallelism in Java, as previously described in section 4.7. Auto-
parallelizing compilers offer the least amount of work considering re-
design and modifications to the current sequential simulator. However
the auto-parallelizing compilers or byte code transformation tools
available, such as MANTA [29] and javab [30], are prototype softwares
which have originated from universities and have mainly been proven
for small artificial code examples rather than real-world complex
applications. These compilers also tend to support only a limited set, or
early versions of the Java JDK. Other APIs for parallel Java include rich
frameworks such as Parallel Java [26], JPPF [27] and JOMP [28] and are
primarily targets for distributed computing in grid networks. However,
building a customized light weight framework for parallel execution
based on the Java concurrency API [24] is chosen as the design strategy
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due to a higher level of control and to avoid dependencies on third
party developers.

In order to provide multithreaded execution of physical layer models, it
is required to analyze data dependencies and decompose models and
algorithms in order to execute different logical parts concurrently. A
concurrency framework designed for this purpose can provide
transparent implementation through encapsulation of multithreading
constructs, synchronization and scheduling according to requirements
in section 1.4.

Performance bottlenecks in current design

Using a profiler tool it is possible to determine which part of the
simulation model is the most dominant regarding computational time,
i.e. in which methods and algorithms the CPU spends most time
executing. As previously stated, the physical layer model involves the
most CPU-intense calculations and this is clearly verified by the profiler
results in Table 2, where the beginSubframe() and endSubframe() methods
of the BasicLteManager class, which is the physical layer coordinating
function has the highest CPU-time ratio among most scenarios.

Table 2: Total percent of execution time (CPU time) spend in physical layer sub
frame computations. Data based on call-tree profiling results.

% of total execution time
Scenario beginSubframe() | endSubframe() Other methods
Detailed radio model 1.0 72.7 26.3
File download 2.3 63.3 34.4
File upload 7.3 429 49.8
VoIP 13.1 33.6 53.3

The data in Table 2 is calculated from results obtained by running
JProfiler call tree profiling, which measures the execution time on a
method basis and summarizes execution times hierarchically through
the method call tree. This is further verified by running “hot spot”
profiling which identifies which particular methods constitutes bottle
necks in the system, whereas many methods relating to the physical
layer models were the most dominant. No details regarding profiling

51



Parallel simulation - Parallel
computing for high performance
LTE radio network simulations
Hakan Andersson

7 Design
2010-05-10

results can be presented here based on confidentiality reasons relating to
Ericsson.

The differences between the scenarios in Table 2 depend on several
factors including the number of users, traffic models and computational
models. Hence, task granularity and algorithm regularity is highly
dynamic and is a function of the scenario parameters which are passed
to the simulator for configuration.

Based on the profiler data presented in Table 2, equation 4.3 can be used
to calculate an estimate of the theoretical speedup achieved for N
processors, assuming that the sub-frame computations can be
performed in parallel without synchronization or overhead. However,
this is impossible in reality, but the result can be used as a heuristic for
the potential gains of parallelizing the physical layer of the LTE
simulator. A theoretical estimate of ideal multithreaded LTE simulator
speedup is illustrated in Figure 11, which is based on Amdahl’s law and
the profiler data presented in Table 2.

Estimated parallel speedup (Amdahl’s law) for a simulator
with parallel physical layer computations

Figure 11: Estimated theoretical parallel speedup for a simulator with multithreaded

physical layer computations for the different considered scenarios.

52

A o SRV |

T O [ [ B 1 |

Y | | | | | | === File download ||

‘:\ | | | | | | File upload |,

I volP |

08 SN T

o R l l l l l l l

= W T Neeael : l l l l l l

8 w\\\ | Bl S — | | | | |

o I S S A il =Sy s S B [

IR o D e i o

= I LTl I I I I I I

= | e 1Tmaa o | | | | | |

7] | | ! Tem——l | | | |

= | | I | ] et L R D |

e i e S e e R A

C_) | | | | | | | J |

° I I I I I I I I I

_g | | | | | | | | |

| | | | | | | | |

nq:) | | | | | | | | |
| [ | |

021 i

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

0 | | | | | | | | |

1 2 3 4 5 6 7 8 9 10

Number of processors (N)



7.3

Parallel simulation - Parallel

computing for high performance

LTE radio network simulations 7 Design
Hakan Andersson 2010-05-10

As can be seen in Figure 11 the greatest speedup is expected when
executing the “Detailed radio model” and the “File download” scenarios
since these scenarios spend more CPU-time executing physical layer
computational models than the “File upload” or “VoIP” scenarios. It
should also be noted how the speedup is limited by the sequential
fraction of the program.

Analysis of the LTE physical layer model

The physical layer model provides higher layers with mapping of
logical and transport channels to physical channels. Processing within
the physical layer is initiated by an LTE sub-frame timer that starts a
processing chain at each sub-frame. The physical layer model
computations include initiation of measurements, control channel
transmission and data transmission which is performed at the beginning
of each LTE sub frame. The last processing stage at the beginning of a
LTE sub frame is to update the uplink and downlink multi-path tables
of each UE.

Each simulated LTE sub frame ends with a processing chain of
measurements, control channel transmissions and data transmissions on
the physical layer channels as illustrated in Figure 12. The
measurements involve: sounding, downlink path loss computations,
uplink interference calculations and downlink quality estimations. The
results from these measurements are then used to update the state of
each UE or base station.

After all the measurements have been completed, control channel
transmission and reception are simulated. The PDCCH is used to
transmit downlink control information, mainly scheduling decisions
that are required for the reception of PDSCH and for scheduling grants
enabling transmission on the PUSCH. Hence, the transmission on
PUSCH and PDSCH cannot be conducted before the PDCCH processing
is completed. Run-time tests with deterministic verification has also
confirmed that data transmission and reception cannot be processed
before quality measurements and control channel transmission and
reception is completed.

The last step in the physical layer processing is to clear the transmission
data from the current sub frame. Naturally this can not be performed
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before all transmissions are completed, which is the reason for clearing
uplink and downlink transmissions at the last processing stage.

N
~N)
Cell
DL Cell Power ]
J
UE / eNodeB \N
[ Measurements
Sounding
DL Path Loss
UL Interference

v {DL Quality Estimator
Control CH Transmission /
Reception PDCCH

— A A A____A__J — A A____A____J

=
PUSCH
v RACH
[ Transmission / Reception PHICH
PUCCH
PDSCH

Figure 12: Physical layer processing steps and affected models for a LTE sub frame.

NS

Data and control dependency analysis

The physical layer model is naturally decomposed to different
measurement, control channel transmission and physical channel
transmission tasks as illustrated in Figure 12 due to the embarrassingly
parallel nature of the model. Each type of measurement involves no data
dependencies between each other and each measurement algorithm
may be run in parallel over several different cells, base stations or UEs,
depending on the particular algorithm. Measurements and control
channel transmissions are independent from each other in the current
model and can be processed in parallel. It is, however, noticeable that
control channel transmission is not very computation intensive
compared to quality measurements.

Simulation of data transmission and reception is based on the results
from control channel transmission and reception and hence control
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channel transmission must be completed before data transmission is
initiated. Since all UEs have their own channels for transmission and
reception they can be computed in parallel. However, current sub frame
transmissions can not be cleared before all transmissions are complete.
This can be seen as a control dependency according to the taxonomy of
M. O. Tokhi et al. [19], even through this relationship is rather obvious.
Hence, it is vital to wait for all physical layer transmissions to be
completed and cleared before continuing the processing of other events
from the simulator event queue.

Most physical layer models calculate results such as SINR, MMSE, OK
flags etc. to be provided to higher layers. This is currently conducted by
sending data directly from measurement and channel models to higher
layers of associated UEs as soon as results have been calculated. Higher
layers might then in turn push events to the event queue of the
simulator. In a parallel scenario with non-deterministic execution this
may result in stochastic behavior (output) of the simulator. Hence
results from physical layer models must be synchronized properly in
order to provide deterministic results.

Task-oriented concurrency framework

To enable concurrent multithreaded execution of the program and hide
implementation details in order to provide transparency for the
developer, a task-oriented concurrency framework is proposed. A task
in this case is defined as an arbitrary segment of code to be executed
asynchronously. Tasks are further classified into two sub types:

e Unordered task — A segment of code that is executed concurrently
on a separate thread and processes local data where the order of
execution is not essential.

e Ordered task — A segment of code that is executed concurrently on
a separate thread and processes non-shared data and returns a
result to be processed sequentially (shared or local data).

This can be directly translated to an UML class description where
AbstractTask is a generalization of UnorderedTask and OrderedTask as
illustrated in Figure 13. A coordinating class TaskManager, is also created
to encapsulate task scheduling, execution and synchronization among
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asynchronous tasks. Each simulator has a task manager instance to
handle its tasks.

AbstractTask

HaskMNumber : long

HAbDstract Task{in owner)
+Abstract Task(in taskManager)
kgetTaskiNumber() | long

wlrtefaces sinterfaces
Callable<Runnable> Runnable
+callf] - Runnahle +runf) : woid
OrderedTask UnorderedTask
FOrderadTask(in cwner : Block) +HUnordered Task{in owner - Block)
+OrderadTask(in taskManager : TaskManager) | +UnorderedTaskiin taskManager | TaskManager)

Figure 13: UML-class diagram of task class hierarchy.

The classes UnorderedTask and OrderedTask implement the Runnable and
Callable<Runnable> interfaces of the Java concurrency API as abstract
methods which makes it possible to use the constructors of the classes to
create anonymous class instances with specialized run() or call()
methods in order to provide arbitrary code to be executed
asynchronously through class specialization. This is illustrated with
source code examples in Figure 14 and Figure 15.

new UnorderedTask (this) {
public void run () {
async_operation();

}

}s

Figure 14: Java code example of UnorderedTask usage to encapsulate a code segment
to be executed asynchronously on a separate thread.

In the constructor of the task classes, the object can submit itself for
execution by calling the submit method of the coordinating TaskManager
class. The task manager reference can be obtained from the object that
created the task (derived from Block) through its reference to the
simulator instance. Hence, the this parameter should be passed to the
constructor when creating a task.
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new OrderedTask (this) {
public Runnable call() {
final Result result =
return new Runnable ()
public void run() {
process (result) ;

async_calc();
{

Figure 15: Java code example of OrderedTask usage to encapsulate a code segment to
be executed asynchronously on a separate thread and return another code segment
to be executed sequentially on the main thread.

OrderedTask objects return a Runnable object (see Figure 15) which makes
it possible to return arbitrary code that should be executed sequentially.
This allows a high degree of flexibility as asynchronous computations in
the call method body can return an asynchronously computed result to
be processed sequentially in logical order. The Runnable object returned
by an ordered task is automatically executed in logical order by the task
manager when asynchronous computations are performed by storing
submitted tasks in a queue.

Task management and asynchronous execution

A task manager can be bound to a simulator instance and manage the
scheduling and execution of arbitrary asynchronous tasks using a thread
pool in order to minimize thread creation overhead. This is achieved by
executing tasks on idle threads and reusing threads for queued tasks as
soon as executing a previous task has been completed. The
ExecutorService of the Java concurrency API [24] enables the
management of a fixed size thread pool and manages task scheduling
and execution of classes that implement the Rumnnable or Callable
interfaces. The Runnable interface defines a method that may be
executed by a thread and the Callable interface a method to be executed
on a separate thread that returns a value. Tasks are scheduled (queued)
in a first-come-first-served (FCFS) manner, which may not provide
optimal load balance, but is better than a random scheduling as
imbalance will last no longer than the length of one task. This is the
standard scheduling algorithm as implemented in the ExecutorService
class of the Java concurrency API 1.6. Figure 16 illustrates how tasks are
submitted, queued at the task manager and executed by acquiring idle

57



Parallel simulation - Parallel

computing for high performance

LTE radio network simulations 7 Design
Hakan Andersson 2010-05-10

threads from the thread pool. Blocking queues are used to store
submitted jobs and non-blocking queues to store Future objects in order
to be able to implement synchronization and execution of Runnable
objects returned by ordered tasks.

The size of the thread pool is set equal to the number of processors of
the system in order to minimize overhead due to context switching and
to maximize hardware utilization. However, the thread size can easily
be set to any number, which is advantageous for performing
performance experiments with different number of threads and
increased hardware utilization control.

Thread pool (Idle threads)

Return thread to vool
Submit(...) <
v Aauire thread
v Execute
Submit
o UT [ . [ UT P Rennable >§ UT
UnorderedTask l
Submit
ot | . [of —|> cable —>§ OT

OrderedTask aueue

Enaueue Future<Runnable>

p| F<R> F<R>
Enaueue Future<QObiect> Pending queue (Ordered
p| F<O> F<O>

Pending queue (Unordered Tasks)

Figure 16: Block schema describing task submission and execution of tasks.

The task manager is heavily based upon the functionality provided by
the Java concurrency API ExecutorService, but also supports coordination
and ordering of tasks. The most important functionality of the task
manager is the possibility of submitting tasks (UnorderedTask and
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OrderedTask class specializations) for the execution and synchronization
of these asynchronous operations. This enables the so called fork-join
design pattern to be used in software design, as described by T. G.
Mattson et al. [5]. The fork-join design pattern actually means that at a
certain point in the program, work is decomposed so as to be executed
on different processors of the system for asynchronous execution (fork).
The program then requires to wait for the results from these
asynchronous computations in order to be able to continue execution at
a certain point where data dependency is present (join). The fork/join
pattern is very useful if the number of tasks to be executed is dynamic
and changes over time which is the case in LTE simulation. This
behavior is conceptually illustrated in Figure 17.

C1
C2 s
D

fork G join

Figure 17: Conceptual illustration of fork/join pattern where task C is divided into
several independent sub-tasks that need to be combined (joined) in order to execute
task D.

The fork operation in this sense means that tasks are created by
instantiating specializations of UnorderedTask and/or OrderedTask classes.
The task manager will schedule these tasks for execution and run any
returned Runnable objects sequentially on the main thread. However, in
order to perform a join operation it must be verified that all
asynchronous operations have completed their execution. As illustrated
in Figure 16, a Future<I> class template instance is obtained when tasks
are submitted for execution. These objects are part of the Java
concurrency API and support the main thread to be blocked, waiting for
tasks to complete. The join operation is therefore accomplished by
simply queuing Future<Object> and Future<Runnable> objects and
removing them from the queue of pending tasks as they are completed.
When all pending task queues are empty there are no more
asynchronously executing tasks and the program can safely proceed. A
UML diagram illustrating the complete task-oriented framework design
is presented in Appendix C, Figure 36.
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Orchestration of tasks and data in LTE physical layer

Based on the results from the analysis of data and control dependencies
in the LTE physical layer model (see section 7.3 and 7.4) it is possible to
introduce a multithreaded execution model which resembles the task-
oriented framework proposed in sections 7.5 and 7.6.

Currently each processing stage (measurements, control channel
transmission, data transmission etc.) in the physical layer simulation
model is implemented as loop constructs that iterate in sequence over a
collection of objects with a common interface. This is the case for
processing in both beginSubframe() and endSubframe() methods of the
LTE physical layer. For this reasons all independent physical layer
algorithms may be potential targets for loop-parallelism. However, the
dynamic nature of algorithms and task granularity may cause thread
management and synchronization overhead to be more expensive than
the speedup gained by mapping algorithms, or tasks to several
processors.

Using a common interface for all physical layer model entities is
practical when designing and implementing software, but the
abstraction provided by such an interface is an obstacle when
attempting to implement multithreading concepts that are efficient in
every scenario. Obviously, simple parallel loop constructs would not be
an efficient solution.

In order to maximize efficiency by using multithreading techniques and
minimize overhead caused by thread management it is more convenient
to loop sequentially over physical layer models, but create
asynchronous tasks in the methods of the physical layer models (classes)
that are called from loop constructs. In this manner, complex algorithms
can take advantage of multi processor hardware, while simpler
constructs or quick-returns might benefit from executing on the main
thread, thus avoiding the thread management overhead. Simple run-
time tests indicated that this approach provides a higher speedup than
parallel loop implementations. Determining which algorithms are
suitable for being implemented as asynchronous tasks can be
determined by profiling data.

As previously stated in section 7.4, most physical layer models,
represented by Java classes, sends computed results to higher layers as
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soon as they have been calculated, which may result in stochastic
behavior of the simulator due to out-of-order event generation. The
OrderedTask class is designed to solve this particular situation. By
implementing the call method of the abstract OrderedTask and place
calculations to be performed asynchronously in this method it is
possible to queue the results by placing code that sends data to high
layers in a Runnable object that is returned by the call method. In this
manner the internal structure of the physical layer models do not
require any dramatic changes in order to benefit from multithreading
parallelism. Additional data that might be necessary to access can be
declared as constant data (final in Java) in order to be accessed by these
anonymous class instances. Since the OrderedTask instances are created
from the main thread, queued result objects will be ordered in a logical
order. These queued results will then be processed when the task
manager is called to synchronize. Synchronization points in the program
can be determined from the data and control dependency analysis in
section 7 4.

All measurements and control channel transmissions have no data
dependencies in the LTE physical layer model and can be executed in
parallel. However, data transmission and reception on physical layer
channels PDSCH, PUSCH etc. cannot be processed until all
measurements and control channel transmission are complete. Hence,
synchronization is required before data transmission and reception are
initiated as illustrated in Figure 18.

Measurements

Reception

v

Svnchronize

Wait for asynchronous measurements

and control channel transmission to
complete.

Transmission / Reception

[ )
[ Control CH Transmission / ]
[ ]
[ )
[ ]

Svnchronize Wait for data transmission to comvlete.

Figure 18: Conceptual model of parallel execution and synchronization of LTE
physical layer models.
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Synchronization is also necessary after all asynchronous data
transmission and reception tasks have been scheduled in order to wait
for the transmission to complete before processing other events from the
simulator event queue.

Using this approach to provide multithreaded execution, parallelism is
exploited over all cells and UE physical layer channels. It should be
noted that some simpler operations such as methods called to clear
transmissions or update states of physical layer entities that do not
return any results to be reported to higher layers (not described here),
can benefit from multithreading techniques through the UnorderedTask
class which provides less overhead than the OrderedTask class.

Preserving deterministic behavior

Definition of deterministic simulation

Deterministic behavior can be defined as an unbroken chain of prior
occurrences. A deterministic system in this sense is a system in which no
randomness is involved in the development of future states of the
system. Deterministic models thus produce the same output for a given
starting condition. This implies that in event-driven simulation, the
chain of events and their time stamps will be equivalent every time the
simulation is executed, regardless of the hardware or state of the
executing system. Hence, deterministic simulation implies that the
results can be repeated.

This apparently becomes a problem in a parallel computing
environment with non-deterministic execution as the order of object
creation, function calls and order of events may alter from time to time
depending on the operating system thread scheduling, the number of
processors used and the current system load.

Synchronization and ordering of log events

The simulator output or simulator log is generated by log handler
objects that are called when simulation data is logged as previously
described in section 3.2.3. Since the simulator by definition is
deterministic, at least when executing on the same system, two equal
simulation logs imply two equal simulation states, assuming that
sufficient information about the simulation state is written to the
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simulation log. If a simulation state for parallel and sequential execution
differs, simulation is not deterministic as this implies that the simulation
state or result is dependent on the order of execution which is stochastic.
This problem is illustrated by example in Figure 19, where two
otherwise independent executing concurrent tasks send data to the
logging system in invalid logical order.

Main Task A Task B LogHandler
thread {warker (Warker
T thread) thread)

I T
: 1: new UnorderedT ask(this) {...} bJ— |

2 logitem log(Al) :

2.1: LogHandler handleLogEvent({&l #

3 new UnorderedT ask(this {...}

4 logltem log(C1)
A2 logltem log(C1)
3.1 logltem log(B1)
2.2 logltem log{A2)

3.1 .1 logHandler handl el ogE vert{B1)
2.2.1: LogHandler.handle LogE vert(4)

A A A A

Figure 19: Sequence diagram illustrating logging out-of-sequence problem.

Since one of the primary design goals is to provide transparency of
concurrency constructs to the developer, a synchronization algorithm
for log events is required. If log events are automatically ordered,
logging can be implemented in exactly the same manner as in a
sequential program. When data is sent to a log item, a log event is
generated and distributed to all registered log handlers. Hence,
synchronization of log events means that log events should not be sent
to any log handler if there is a logically preceding task executing that
could potentially also generate a log event. Logical order can be
determined by introducing a serial number that is assigned to each
concurrent task when it is created. Concurrent tasks are spawned in
sequential order on the main thread, which in turn will imply that the
serial number is incremented for each generated task. By associating a
scheduled concurrent task with the ID of a thread that is about to be
executed in a hash table, it is possible to keep track of executing threads
and the logical order in which the log events should be processed. To
minimize overhead, log events are processed directly if there is no
scheduled or pending task. However, if there are scheduled or pending
tasks, log events are sorted using a specialized dynamic priority queue
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that sorts log events based on the associated task serial number. For log
events with equal task serial numbers, a first-in-first-out (FIFO) strategy
is applied.

The algorithm to order log events can be divided into a producer and a
consumer part as described by the following pseudo code:

Producer Consumer
Set R = current thread While Q is not empty
Set X = task number of R Set L = first item in Q
If R is in P If L.X <= K
Push L(X) to Q Pop L from Q
Else Process L
If Q is empty and M = K End if
Process L (X) End While
Consume
Else
Push L(X) to Q
End if
T A 4 £

Figure 20: Producer and consumer algorithms for log event processing.

where R is the current thread, P is the set of currently executing
(registered) threads, L(X) is a log event with associated task number
(priority) X, M is the total number of created tasks, K is the total number
of completed tasks, N is the zero-based serial number of a task (N<M),
and Q is a priority queue based on X. This makes it possible to consume
log events on the main thread as stated in Figure 20, or in parallel by
running the consumer part on a separate thread. This would imply that
the producer thread never calls consume, instead the main thread can
continue normal execution. However, parallel log event processing has
only been prepared for and not implemented in the prototype design,
since there is no current guarantee that all log handler implementations
are thread-safe.

It is vital for the solution described above that the counters for created
and completed tasks are implemented as atomic counters to provide
cross-thread data integrity. However, the hash table used to register and
unregister executing threads does not require to be atomic since
registration can be handled by the task manager logic on the main
thread. The priority queue manages the sorting of queued log events,
which is illustrated by example in Figure 21 according to the sequence
diagram in Figure 19.
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Priority queue (task number, log event) Action

Register thread (I, 1)

Start execution of thread I

Register thread (1L, 2)
Start execution of thread II
1, Al « Push log event (1, Al)
1,Al | 3,C1 |« Push log event (3, C1)
1,A1 | 2,B1 | 3,C1 |« Push log event (2, B1)
1,A1 | 1,A2 | 2,B1 | 3,C1 |« Push log event (1, A2)
Unregister thread I
Pop and process log event Al
1,Al (&4 1, A2 | 2,B1 | 3,C1 Pop and process log event Al
Unregister thread II
1, A2 4 2,B1 | 3,C1 Pop and process log event A2
2,B1 [« 3,C1 Pop and process log event Bl
3, Cl e Pop and process log event C1

Figure 21: Example of how the priority queue is used to order log events according
to the scenario illustrated in the sequence diagram in Figure 19.

Verification of deterministic behavior

In order to verify deterministic behavior, sequential and parallel
simulation output using the same seed and scenario parameters must be
equal. Simulation output is based on log data and in order to reflect the
simulation state as accurately as possible all deterministic log items
should be compared. However, this will result in thousands or millions
of log events. Storing all this data in memory would require significant
memory resources and hence it is more efficient to use a checksum
approach in order to minimize memory requirements.

Java has built in support for 64-bit cyclic redundancy checksums
(CRC32 class) [49], which are based on IETF RFC 1952 [50]. The CRC32
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implementation is a polynomial checksum of order 32 that calculates a
64-bit fixed-length binary sequence from raw data and can be used as an
error-detecting code. Using the CRC32 logic a specialized log handler
can be created that accumulates a checksum ¢ for the current state based
on the byte stream conversion of log event data according to:

g, =CRC,,(¢,,,x,) (7.5)

where ¢, is a checksum containing the simulator state history until the
n:th log event (state) derived from the previous checksum state ¢, , and
the last log event x, In order to verify that a multithreaded

implementation is deterministic, this is simply accomplished by adding
a CRC32 based log handler to a sequential and parallel simulator and
comparing the output as illustrated in Figure 22.

[ Scenario Parameters ]

A 4 A 4
[Sequential Simulator] [ Parallel Simulator ]

X

n

Y
A 4

[ CRC-32 Log Handler ]

\ 4
[ CRC-32 Log Handler ]

£,=CRC,(¢g, , x,) € ,w =CRC,,(¢ /;1.1/ Y.)

Deterministic

Figure 22: Conceptual model of checksum-based verification of deterministic
behaviour.

It should be noted that each simulator sends data to the log handler
every time output data is sent to the logging system. Hence it is also
necessary to re-compute the CRC checksum according to equation 7.5
for every log event. If ¢, and ¢’, (see Figure 22) are compared every time

n increases (a log event is generated) and equation 7.5 is recalculated,
stochastic behavior can be detected at the log event level.
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Simulation output, i.e. log events typically consists of values describing
properties including transmission power, SINR, fading etc. for different
model instances. Since most output data is calculated wusing
mathematical models, errors in a parallel simulator are likely to
propagate with time. Hence the probability of detecting stochastic
behaviour increases as simulation time tends towards infinity which
implies n—eo.

To automatically perform deterministic verification mechanisms similar
to the mechanism described in Figure 22 unit tests prove to be very
useful. At Ericsson JUnit is used to create unit tests to automatically
verify the functionality of the simulator. It is thus possible to set up
several scenarios in order to test the deterministic properties of parallel
and sequential simulations automatically.
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Results

The graphs presented in chapter 8 summarize the results of the

performance measurements carried out according to the experimental

methodology described in chapter 6.

Performance gain of multithreaded simulation

The graphs presented in Figure 23, Figure 24 and Figure 25 illustrate the
reduction in average execution time T, for the multithreaded prototype

when executing the four different scenarios: I, II, III and IV (see section
6.3) for 10.0 seconds (simulation time) on system A, B and C respectively
(see section 6.1). The dotted curve illustrates the expected ideal speedup,
or actually estimated reduction in execution time (T,/ S,) according to

Amdahl’s law.

Average execution time for multithreaded prototype
(System A (Intel Core2 6600 @ 2.40 GHz / Linux)

50

Average execution time [time units]
= - N N w w B P
o [} o [} o [} o [

[$)]

I DRM (PHY)
I File download (PHY)
I File upload (PHY)
I VolP (PHY)
[ DRM (Higher layers)
[N File download (Higher layers)
[ File upload (Higher layers)
I \VolP (Higher layers)
DRM (Amdahl’s law)

————— File download (Amdahl’s law) |

File upload (Amdahl’s law)
----- VolP (Amdahl’s law)

Number of processors used (thread pool size)

Figure 23: Average physical layer execution time for the parallel prototype
implementation executing for 10.0 seconds (simulation time) on system A.
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\\ : : File download (Amdahl’s law)
~ | [ Rt File upload (Amdahl’s law)
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Average execution time [time units]

Average execution time for multithreaded prototype
(System B (Intel Core2 Extreme X9650 @ 3.00 GHz / Windows Vista)
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Figure 24: Average physical layer execution time for the parallel prototype
implementation executing for 10.0 seconds (simulation time) on system B.
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Figure 25: Average physical layer execution time for the parallel prototype
implementation executing for 10.0 seconds (simulation time) on system C.
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Execution time per simulation job when executing
multiple simulation jobs

In order to compare simulation by parallel jobs (independent processes)
and multithreading techniques Figure 26, Figure 27 and Figure 28
illustrate the average execution time per job on system A, B and C
respectively. The leftmost bar group is the execution time of a single
sequential job T,. The second bar group is the theoretical ideal speedup
T, / N (N defines number of processors on the system). The third bar
group is the average execution time per single-threaded job, when
running N such jobs in parallel (obtained by dividing the sum of all
actual process execution times by N). The rightmost column is the
average execution time T, of a single job when executing the

multithreaded prototype with a thread pool size of N.

Job execution time on system A
(Intel Core2 6600 @ 2.40 GHz / Linux

- | I DRM (PHY)
|
77777777777777 +--| I File download (PHY)
! I File upload (PHY)
|

l
|
|
L
1
|
S EEEVoR PHY) ;,
i "I DRM (Higher layers) i
+~-| [ File download (Higher layers) | -~ [l ~
| B File upload (Higher layers) |,
| L
| |
| |
‘ |
‘ |

~~| I VolP (Higher layers)

Average execution time per job [time units]

Single job Ideal speedup Parallel jobs  Multithreaded prototype

Figure 26: Average execution time per simulation job on system A, N = 2.

70



Parallel

simulation - Parallel

computing for high performance
LTE radio network simulations
Hékan Andersson

8 Results
2010-05-10

40

35

30

25

Average execution time per job [time units]

Figure
N=4.

70

Job execution time on system B
(Intel Core2 Extreme X9650 @ 3.00 GHz / Windows Vista

Single job

Ideal speedup

T
I DRM (PHY)
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B VoP (PHY)
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I VolP (Higher layers)
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Job execution time on system C
(2 x Intel Xeon E5440 @ 3.00 GHz / Linux

Multithreaded prototype

27: Average execution per simulation job on system B, number of processors
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Figure 28: Average execution per simulation job on system C, number of processors

N=8.
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Comparison of parallel jobs and an ideal multithreaded
simulator

The graphs illustrated in Figure 29, Figure 30 and Figure 31 illustrate the
measured average execution time per simulation job when running N
such jobs in parallel on N processors (obtained by dividing the sum of
all actual process execution times by N), compared to the expected ideal
estimate of an ideal multithreaded simulator derived from Amdahl’s
law (T, / S,). Two ideal estimates have been visualized: one speedup

estimate for an ideal multithreaded simulator with a parallel physical
layer (PHY) and one estimate for an ideal multithreaded simulator with
both a parallel physical layer and a parallel media access control (MAC)
layer, which would be the next natural extension in the further
development of parallelising the simulator.

Average execution time per job when running parallel simulation jobs on system A
compared to estimates (Amdahls law) of an ideal multithreaded simulator
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oo [ File upload - Amdahls law (PHY) B

‘ File upload - Amdahls law (PHY+MAC)

| ==——= VolP - Amdahls law (PHY)

e VolP - Amdahls law (PHY+MAC)
________ ! DRM - Concurrent processes

”””””””””””””” —ill— File download - Concurrent processes -

File upload - Concurrent processes
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Figure 29: Average execution time of a single parallel simulation job executing on
system A compared to ideal estimate of a multithreaded simulator.
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Average execution time per job when running parallel simulation jobs on system B
compared to estimates (Amdahls law) of an ideal multithreaded simulator
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Figure 30: Average execution time of a single parallel simulation job executing on
system B compared to ideal estimates of a multithreaded simulator.

Average execution time per job when running parallel simulation jobs on system C
compared to estimates (Amdahls law) of an ideal multithreaded simulator
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Figure 31: Average execution time of a single parallel simulation job executing on
system C compared to ideal estimate of a multithreaded simulator.
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Implementation transparency and task-oriented
framework usability

This section is a summary of the received answers to the questionnaire
in Appendix B which are presented as a whole in Appendix D. A total of
6 people answered the questionnaire. 50% of the consulted people are
represented by research engineers at Ericsson and the other 50% is
represented by people that are working with computer engineering
outside of Ericsson.

Q1: Previous experience of Q2a: Understands semantics Q2b: Sees potential advantages compared
parallel programming of the task constructs to other multithreading constructs
Q2c: Sees potential drawbacks compared Q3: Would feel comfortable Q4: Result UnorderedTask
to other multithreading constructs using task constructs execution problem

Figure 32: Summary of questionnaire results regarding task-oriented framework
usability and readability.

Q5: Result OrderedTask
execution problem

As can be seen in Figure 32, 67% of the consulted people had previous
experience of parallel programming and multithreading constructs from
a variety of programming languages: C POSIX threads, Java, Microsoft
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C# .NET. The results obtained for questions 2b and 2c had 33% of the
results marked as not applicable (N/a). The reason for this is that these
people did not have any previous experience of multithreading
constructs to compare with. The results from question 4 and 5 have been
quantified to be either completely correct or completely wrong.

The correct answer to question number 4 in Appendix B, which
illustrates a code example for executing asynchronous operations using
the UnorderedTask construct, is that nothing can be stated considering
the order of execution. When the first UnorderedTask object is created it
will submit itself for execution immediately and the same is true for the
second task object that is created. Since the execution of the threads that
executes these tasks and the main thread are non-deterministic and
unsynchronized, the order of execution is impossible to determine.

The correct answer to question number 5 in Appendix B, which
illustrates a code example for executing asynchronous operations using
the OrderedTask construct is that “C” will be printed first, then “A” and
lastly “B”. The reason for this is that the print statements are placed
within the Rumnnable object that is returned by the asynchronous
operation. By definition of the task-oriented framework these objects
will be executed in sequential order according to the order in which the
task objects where created when the completeTasks() method of the
TaskManager class is called. Since the print statement for “C” is called
before completeTasks(), the order of execution of the print statements will
be deterministic.

Verification of deterministic behavior

Automated CRC-32 based unit tests, as described in section 7.8.3, have
been used to verify that the multithreaded prototype is deterministic
and produces the same result as sequential simulation when running
simulations for 15.0 seconds (simulation time) for all the four scenarios
described in section 6.3. Since each LTE sub frame is 1.0 ms, this means
that the checksums are calculated from all deterministic log messages
generated during 15,000 LTE sub frames which approximately

constitute data from 9x10°log messages.
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Conclusions

Software design evaluation

The multithreaded prototype presented in this report enables
multithreaded parallelism and computational concurrency over cells
and UEs for LTE physical layer simulation. The proposed solution
indicates that multithreading mechanisms suuch as: scheduling,
execution and synchronization can be partly automated and provided
through a minimal interface using concepts of class generalization,
anonymous classes and standard Java concurrency interfaces, while still
being scalable with hardware. The solution also shows that parallel
computations in LTE simulations are possible by decomposing models
and providing appropriate data synchronization.

Strengths and weaknesses of the task-oriented framework

The proposed task-oriented framework provides two abstract classes
OrderedTask and UnorderedTask in order to trigger asynchronous
computation. The possibility to use abstract and anonymous classes in
Java makes it possible to create class specializations that encapsulate
arbitrary code to be executed asynchronously which has resulted in a
very flexible task-oriented framework. This framework is not limited to
be used in simulation, even though the design of particulary the
OrderedTask is somewhat based on how data is computed in the physical
layer of the Ericsson LTE simulator. However, the synchronization
mechanism of tasks is currently based on atomic counters and serial
numbers associated to the task that prevents from creating sub-tasks in
order to generate hierarchical execution trees. In order to increase
flexibility of the task framework it might be of interest to evolve the
synchronization algorithm to support hierarchical task relationships by
introducing parent and child relationships between tasks in order to
process critical parts of the code sequentially. However, this is better
avoided since it might increase complexity of code and make debugging
an even more difficult task.

Another disadvantage is that each created task object (OrderedTask or
UnorderedTask) currently requires a direct or indirect reference

76



9.1.2

9.1.3

Parallel simulation - Parallel

computing for high performance

LTE radio network simulations 9 Conclusions
Hakan Andersson 2010-05-10

parameter passed to the constructor in order to submit the task for
execution to the TaskManager class instance that is bound to the
simulator. This could be avoided by allowing the TaskManager to be a
singleton. However, this is a merely a question of design whether static
instances should be tolerated or not.

Evaluation of questionnaire considering implementation readability
and transparency

From the questionnaire result summaries in Figure 32, it is clear that the
small group of consulted people in general have a positive attitude to
how tasks are created and synchronized after only a brief introduction
in the questionnaire description. This conclusion is based on the fact that
83% of the people considered the semantics of the constructs
understandable and there were no inventions regarding potential
drawbacks. However, considering the results from questions 4 and 5,
which targets readability and to determine whether the semantics really
are understandable, only 67% understood the underlying executional
model of UnorderedTasks and only 50% understood the executional
model of OrderedTasks. The results indicate that the brief introduction
presented in the questionnaire in Appendix B is not sufficiently
elaborative and that the task interface might require further clarification
or re-design.

Evaluation of deterministic behavior

In order to provide deterministic output of the simulator during non-
deterministic execution of physical layer models in the multithreaded
prototype and still provide implementation transparency, a
synchronization mechanism is implemented for log events. The
mechanism provides automatic synchronization of log events to send to
the log handlers in the same order they would be sent during sequential
execution. The ordering of log events introduces additional overhead
compared to allowing out-of-order presence of log output messages,
caused by queuing and sorting of log events. However, this allows
output to be compared from sequential and multithreaded simulation in
a straight-forward manner which was an initial requirement for this
work. However if only the content of each log message had to be equal,
a method other than CRC checksums could have been used, for example
XOR-operations between log messages. Using such an approach would
have provided data of log messages to be compared, but would not
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consider the order of log messages since they actually do not have
anything to do with the simulator state. Simple XOR-operations would
also have provided a faster method for verifying deterministic
properties of the simulator.

Evaluation of multithreaded prototype performance

Anomalies between systems

When measuring the execution time of a multithreaded application and
increasing the number of processors, a speedup is expected if the
parallelism is scalable. As can be seen in Figure 23, Figure 24 and Figure
25 the speedup or reduction of simulator execution time increases as the
number of processors N increases in most cases. This expectation is best
illustrated by the results obtained when running experiments on system
B. However, several anomalies between scenarios and systems
(hardware and operating systems) are identified. For system A and
system C, both Linux machines, a degradation of performance is
observed for “VoIP” scenarios for both sequential and multithreaded
execution. This is not present for system B, where the “detailed radio
model” scenario takes the longest time to compute. The “VoIP” scenario
is different from the other scenarios as it has many users but physical
computations are not very CPU intense, i.e. has fine-grained task
granularity. Since there are more users there are considerably more
objects in memory than for the other scenarios which make the “VoIP”
scenario much more memory intense. Since both Linux systems have 64-
bit versions of the OS the performance penalty when running the
“VoIP” scenario compared to running it on system B is probably
primarily an effect caused by the extensive memory overhead due to 64-
bit memory addresses.

Multithreading performance and multithreading overhead

The results obtained from experiments on system B in Figure 24 are the
results that best conform to Amdahl’s law. In this graph the overhead
caused by thread management and synchronization is clearly visible in
comparison to the estimated ideal reduction in execution time where the
“detailed radio model” scenario provides the most promising speedup
result. The reason for this is that the “detailed radio model” scenario is
very computationally expensive considering physical layer models.
Hence, it has a higher task granularity than for example the “VoIP”
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scenario which provides fine-grained task granularity. Java and the
proposed solution appear to have considerable overhead since a very
large task granularity is necessary in order to provide a speedup close to
the ideal. This apparently becomes a problem as different task
granularities would be required to achieve a uniform speedup for
different scenarios which would in turn increase the complexity of a
multithreaded implementation according to the current simulator
design. The results obtained from experiments A and C, see Figure 23
and Figure 25, verify this and also indicate that overhead is so large that
a degradation of performance is obtained with worst case speedups of
Sy=0.68 and S,= 0.70 when executing the multithreaded simulator for a

“VoIP” scenario on system A and C respectively.

The best speedup results for multithreaded simulation are generally
obtained for “detailed radio model” scenarios with speedups of 5,~1.5,

S=2.2, 5= 2.5 considering physical layer computations on system A, B

and C respectively when the number of threads equals the number of
processors. As can be seen in Figure 25, the speedups obtained on
system C are far from that suggested by the estimates derived from
profiler data and Amdahl’s law in contrast to the results of system A
and B (see Figure 23 and Figure 24). This is likely to be a result of
increased communication overhead for intraprocessor communication
since system C is equipped with two cooperating processors with four
cores each. In general it has been observed for multithreaded physical
layer computations that:

o S, €[0.68,1.58] when executed on system A.
o S, [1.06,2.24] when executed on system B.
e S, €[0.70,2.48] when executed on system C.

It is not surprising that none of the multithreaded experiments has the
ability to reach ideal speedups since overhead can not be avoided, but
the most important observation may be the dramatic difference in
speedup between “detailed radio model” scenarios and “VoIP”
scenarios. This indicates that multithreaded application performance is
very tightly related to computational grain size which makes it difficult
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to design a general multithreaded simulator that provides considerable
speedups for all imaginable scenarios.

Comparison of job parallelization and multithreading

In order to increase performance and reduce the execution time of
simulation work at Ericsson Research, parallelism is currently exploited
by distributing independent simulation jobs over the processors
available on a particular system. This leads to increased memory access
and memory requirements that scale linearly with the number of
concurrent jobs. Ideally the number of concurrent jobs is set equal to the
number of processors on the host system. Multithreading techniques are
superior in most cases to speedup of a single application by increasing
CPU utilization and dividing the work among processors. However, to
determine the most efficient way to complete as many simulation jobs as
possible in the shortest time possible it is vital to compare the execution
times involved in running multiple independent jobs concurrently or
running multiple multithreaded simulators in sequence.

From Figure 26, Figure 27 and Figure 28 it is clear that running parallel
independent jobs is more efficient on all the systems used for
experimental evaluation considering the total simulation time. This is no
surprise since the multithreaded prototype only exploits parallelism in
the physical layers and is limited by the sequential parts of the
simulator. What is more important is to analyze how the speedup scales
with N when considering execution in the physical layer. However,
running parallel jobs also provides better speedup for physical layer
computations on all systems, even if the differences in speedup are as
small as 0.1 for the “detailed radio model” scenario executing on system
B.

The main difference when comparing the different approaches to
running parallel jobs and running multithreaded simulations is that
parallel jobs offers a somewhat uniform speedup while the speedup
obtained by the multithreaded simulator is close to the speedup of
running parallel jobs in some cases, especially for “detailed radio
model” scenarios and results in degradation of performance in some
cases “VoIP”. In general it has been observed for parallel jobs that:
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o S, €[l.53,1.77] considering physical layer computations and

S, €[1.52,1.81] considering total simulation on System A.

o S, €[2.252.94] considering physical layer computations and

S, €[2.23,3.19] considering total simulation on System B.

o S, €[3.90,4.88] considering physical layer computations and

S, €[4.10,5.22] considering total simulation on System C.

Generally it can be stated that parallel jobs provide an approximate
uniform speedup according to equation 9.6 on all systems for all
scenario types, where N is defined as the number of processors.

Sy z%,NZZ (9.6)
As can be seen by the approximation in the equation the speedup
obtained by running parallel jobs is far from ideal, but currently
provides a somewhat uniform and higher speedup than multithreading
techniques. From this it is clear that overhead caused by increased
memory access and higher system bandwidth requirements
(approximately 30% of execution time) is currently less than the
overhead caused by Java thread management and synchronization.

Recommendations for future work

The current means of exploiting parallelism by distributing simulation
jobs as independent processes is currently more efficient than
multithreading techniques when executing multiple simulation jobs,
and hence it is recommended in order to minimize the time required by
LTE simulation by means of this technique. However, multithreading
techniques have indicated considerable speedups in scenarios with high
computational grain size and might be used to speedup single
simulations. Incorporating multithreading techniques within the same
source code however increases code complexity and obstructs code
maintenance.

To reduce the overhead when running parallel jobs (a.k.a. distributed
experiments) it should be possible to redesign the simulator
environment application to run multiple simulator instances or contexts
within the same JVM instead of replicated JVM instances, hence
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reducing memory requirements. A high degree of parallelism similar to
spawning several independent processes can then be exploited by
running each simulator on a separate thread without synchronization
between them within the same JVM or application/process context. This
might result in a speedup greater than the results in this thesis have
indicated due to reduced memory bandwidth requirements as well as
reduced system bus congestion.

It is recommended that Ericsson Research should re-evaluate the gains
of multithreading techniques in the future for several reasons. For
example future hardware and CPU architectures might not as easily
accommodate the distribution of parallel jobs and might favor
multithreaded execution. Distribution of parallel jobs also increases
memory requirements linearly according to the number of processors.
As Java distributions evolves, the overhead of thread management and
synchronization is also likely to decrease, which have already been
indicated in alpha releases of the JDK 1.7. More advanced algorithms as
for example work-stealing also provide more efficient task management.
Algorithms that improve load balance might also be of interest to exploit
in order to improve multithreading performance.

When designing simulators in the future, it is recommended to design
them according to design patterns that are easily mapped to multiple
processors already in use at the beginning of the software design work.
Since the development of simulators at Ericsson involves many
developers it would be profitable to incorporate design patterns and
enforce parallelism through the simulator execution model instead of
relying on special case solutions. Decomposed models where each
model can be executed independently and use thread-safe queues as
interfaces between models or observer/listener patterns where models
are notified of value changes through interprocess messages might be of
interest if a new multithreaded simulator were to be designed from
scratch.
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Appendix A: System specifications

System specifications for the systems used in experiments. Three
different aliases have been used in order to referrer to these systems.

System | CPU CPU RAM (01}
Alias Cores | Memory
(MB)
A Intel® Core™2 2 2,048 Linux 2.6.16 64-
6600 bit (x86_64)
@ 2.40 GHz,
4096 KB cache.
B Intel® Core™2 Extreme 4 3,567 Windows Vista™
X9650 Enterprise
@ 3.00 GHz, 32-bit.
6144 KB cache.
C 2x 2x4 64,975 Linux 2.6.16 64-
Intel® Xeon™ bit (x86_64)
E5440
@ 2.83 GHz,
6144 KB cache.

Table 3: System specifications for the systems used for performance measurements.
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Appendix B: Questionnaire for
evaluation of readability and
usability of parallel constructs

Please formulate your answers short and consistent.

1. Do you have any prior experience of multithreading constructs and
parallel programming from Java and/or any other object oriented
language? Specify language and relevant experience.

2. The abstract classes UnorderedTask and OrderedTask enable
asynchronous execution of arbitrary code by implementing standard
Java interfaces (Runnable and Callable<Runnable>) in specialized
anonymous classes as illustrated by the code example in Figure 33.

new UnorderedTask (this) {
public void run() {
/* process on separate thread */
asynchronousOperationA () ;
}
i
new OrderedTask (this) {
public Runnable call() {
/* process on separate thread */
final Result result = asynchronousOperationB() ;
return new Runnable () {
public void run() {
process (result); /* process on main thread */
}
}i
}
i
/* wait for tasks to complete */
getSimulator () .getTaskManager () .completeTasks () ;

Figure 33: Code example 1 illustrating anonymous task class specialization.

UnorderedTask is used to execute a code segment asynchronously where
order of execution doesn’t matter. OrderedTask is used to execute a code
segment asynchronously and process the results of the asynchronous
computation sequentially in the order that the tasks where created.
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When a task is created it submits itself for execution on a separate
thread. A task manager coordinates execution. By calling the
completeTasks() method of the task manager, the method will not return
until all tasks have finished their asynchronous execution and all
Runnable objects returned by instances of OrderedTask have been
executed in the sequence that they we're created.

a) Do you understand the purpose and difference between the two
classes/constructs UnorderedTask and OrderedTask? If not explain
shortly what confuses you.

b) Do you see any obvious advantages with the constructs in Figure 33
compared to parallel constructs you've seen examples of or used
previously?

¢) Do you see any obvious disadvantages with the constructs in figure
Figure 33 compared to parallel constructs you've seen examples of or
used previously?

3. Would you be comfortable using constructs like the ones described
in Figure 33 in your daily implementation work in order to increase
application performance? If not, why?

4. Can you tell what the console output from the program in Figure 34
would be? If not, specify why.

new UnorderedTask (this) ({
public void run () {
System.out.print (“async operation A”);
}
}i
new UnorderedTask (this) ({
public void run () {
System.out.print (Yasync operation B”);
}
}:
System.out.print (“sequential operation C”);
getSimulator () .getTaskManager () .completeTasks () ;

Figure 34: Fictive code example of UnorderedTask usage.
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5. Can you tell what the console output from the program in Figure 35
would be? If not, specify why.

new OrderedTask (this) {
public Runnable call() {

final Result r = async_operation(some data);
return new Runnable () {
public void run() {

process (r) ;
System.out.println (“seq part A”);

}i
}
}i
new OrderedTask (this) {
public Runnable call() {
final Result r = async_operation(some data);
return new Runnable () {
public void run () {
process (r);
System.out.println (“seq part B”);

}i
}
}i
System.out.println(“seq part C”);
getSimulator () .getTaskManager () .completeTasks () ;

Figure 35: Fictive example of OrderedTask usage.
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Appendix C: UML class diagram for
task-oriented framework
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Figure 36: UML class diagram of task-oriented concurrency framework.

93



Parallel simulation - Parallel

computing for high performance Appendix D: Summary of
LTE radio network simulations questionnaire results
Hékan Andersson 2010-05-10

Appendix D: Summary of
questionnaire results

A summary of the received answers to the questionnaire in Appendix B
is presented here. A total of X people answer the questionnaire. Y
percent of these are constituted by research engineers at Ericsson and Z
percent are people that are working with computer engineering outside
of Ericsson.

Response 1 of 6
1. No.

2.a) Yes

b) I have not seen any other constructs previously.
c) I have not seen any other constructs previously
3. Yes

4. No, I cannot tell the order. The “async operation A” and “async
operation B” are output from asynchronously executed code.

5. Yes, the order will be “seq part A”, “seq part B” and “seq part C”.

Response 2 of 6

1. Yes I have experience from multithreading and parallel programming
in both Java and C# .NET. I've gained this experience when working
with development of systems for business administration and
multithreaded generation of reports.

2. a) The difference and the purpose of the two abstract classes
UnorderedTask and OrderedTask is very clear from their names.

b) To be honest, I'm not really fond of anonymous classes, but in this
case I find the usage and creation of new jobs relatively simple and
straight forward.

¢) I cannot see any obvious drawbacks with these constructs.
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3. I can see myself using this framework for multithreading in my daily
work.

4. What is certain is that “sequential operation C” will be printed first
since completeTasks will be called after that print statement. Which one of
the other statements that will be printed next is impossible to say since
they aren’t executed in any sequential order.

5. In this case it’s clear in which order the statements will execute. This
is clear since there is two OrderedTask that are added and they will
execute in the order they we're created. The program will print the
following;:

seq part C
seq part A

seq part B

Response 3 of 6

1. Sometimes I use threads when I develop Windows applications. One
example is when data should be retrieved from a database at the same
time as a GUI representing the data should be drawn to the screen.
Using threads it’s possible to show the GUI and display a progress bar
to the user to display something like “Collecting data from database...”
or similar to avoid letting the user think that the application has hung.

2.a) Yes

b) If the application has an operation Threadl:HeavyCalculation() and
the wuser starts it by mistake and want to cancel. Then
Thread2:StopAllOperations() might be called to stop Threadl without
waiting for the operation to complete. Am I thinking right?

c) No

3. Yes, it will prevent the program from crashing when a user uses my
GUI in a way I didn’t intend for. The user will also get a smoother
experience and experience that the application is faster.
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4. C will be executed first, then it's uncertain whether A or B will be
executed next. You can guess that A will be executed before B if A is
lighter.

5. (No answer)

Response 4 of 6
1. C, Java and pthreads.

2.a) Yes

b) Fits well with the simulator with asynchronous processes and
synchronous processing of results.

c) No
3. Yes
4. No, the print order is undefined.

5.Yes: C, A, B.

Response 5 of 6
1. No

2. a) Unclear why OrderedTask contains an asynchronous part.

b) -

c)—

3. Sure

4. Since it’s unordered I don’t know if A, B or C is printed out first.

5. A is printed before B, but I'm not sure if C is printed first or last.

Response 6 of 6

1. Yes, on a basic level when I need multiple amounts of calls to be able
to execute irrespective of the other calls in a Java environment.

2. a) I think its very simple. Honestly.
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b) If the order of the executions is important I think the OrderedTask
looks easy to use. UnOrderedTask looks like the kind of threading I'm
used to.

c) Not as I can figure out now.
3. Yes.
4. T have experienced something like:

async operation C
async operation A
async operation B

Reason? The thread that is creating the UnOrderedTask is in
turn....could vary though.

5.

seq part C
seq part A
seq part B

I'm unsure though. A will always be done before B, but I don't know if
C will come first....
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